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Abstract

De-novo reverse-engineering of genome-scale regulatory networks is a fundamental problem of biological and translational
research. One of the major obstacles in developing and evaluating approaches for de-novo gene network reconstruction is
the absence of high-quality genome-scale gold-standard networks of direct regulatory interactions. To establish a
foundation for assessing the accuracy of de-novo gene network reverse-engineering, we constructed high-quality genome-
scale gold-standard networks of direct regulatory interactions in Saccharomyces cerevisiae that incorporate binding and
gene knockout data. Then we used 7 performance metrics to assess accuracy of 18 statistical association-based approaches
for de-novo network reverse-engineering in 13 different datasets spanning over 4 data types. We found that most
reconstructed networks had statistically significant accuracies. We also determined which statistical approaches and
datasets/data types lead to networks with better reconstruction accuracies. While we found that de-novo reverse-
engineering of the entire network is a challenging problem, it is possible to reconstruct sub-networks around some
transcription factors with good accuracy. The latter transcription factors can be identified by assessing their connectivity in
the inferred networks. Overall, this study provides the gene network reverse-engineering community with a rigorous
assessment of the accuracy of S. cerevisiae gene network reconstruction and variability in performance of various
approaches for learning both the entire network and sub-networks around transcription factors.
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Introduction

One of the fundamental problems of modern biology is reverse-

engineering of genome-scale regulatory networks. Addressing this

problem is essential to expanding understanding of normal and

pathologic cellular conditions and can lead to development of new

drugs and therapies. While there are many databases that store

biological pathways (e.g., KEGG and Ingenuity Pathway Analy-

sis), these databases are often inaccurate and/or incomplete

because their knowledge is derived from a multitude of biological

systems and conditions that may not correspond to the problem at

hand. Furthermore, pathways in these databases are affected by

variability of the employed computational and experimental

methods and their reproducibility characteristics [1–3]. Therefore,

there is a strong need for reverse-engineering of genome-scale

regulatory networks de novo from data.

Gene regulatory networks can be constructed by integrating

targeted perturbation data (e.g., gene knockouts or overexpression

of transcription factors) with binding data (e.g., chromatin

immunoprecipitation) (Figure 1). By knocking-out/deleting or

over-expressing transcription factor X and comparing the

expression level of other genes with the wild-type strain, one can

determine regulatory targets of X. On the other hand, a binding

assay allows identification of the binding targets of X. The overlap

of regulatory targets and binding targets defines the set of direct
regulatory targets of X which are graphically represented in gene

regulatory networks. While modern methods in biology enable

performing such studies in a variety of model systems, they are

typically expensive to perform on a genome-scale and often

unfeasible in humans.

However, the wide-spread use of genomic profiling technologies

over the last two decades led to development of thousands of

observational, i.e. non-perturbation datasets (e.g., from case-

control and case-series studies), that are freely available in public

repositories such as GEO [4] and ArrayExpress [5]. In addition,

the computational community has recently provided many

algorithms that can infer causal relations from non-perturbation

data [6–10]; some of them have been adopted to accommodate

the high dimensionalities of modern genomics data [11,12], and

some methods even lead to Nobel awards in domains outside of

biomedicine [13–16]. The question is whether these computa-
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tional methodologies can accurately learn de-novo gene regulatory

networks from highly abundant data in the public domain?

Fortunately, this question has recently received attention in the

scientific community [17–21]. However, the major obstacle in

testing gene network reverse-engineering methods is the absence of

high-quality genome-scale gold-standards of direct regulatory

interactions that are derived by integrating targeted perturbation

with binding data (see Table 1). Another problem is that

currently the scientific community primarily uses perturbation

data for gene network inference (many studies use compendium

microarray data that is obtained by merging a large number of

studies, predominantly with deletion mutants), while results based

on observational data are more important, since the latter data is

easier and cheaper to obtain. In general, it is unknown what types

of datasets are more suitable for gene network reverse-engineering

studies.

To address gaps in prior research, this study focuses on S.
cerevisiae, one of the most well-studied model organisms with a

wide range of available genome-scale data. We first constructed

high-quality genome-scale gold-standards of regulatory interaction

and then assessed 18 statistical association-based approaches (from

both bivariate analysis and multivariate causal graph-based

methods) for de-novo network reverse-engineering in 13 different

datasets that span over 4 data types: (i) observational data

consisting of biological wild-type replicates, (ii) observational data

obtained across time and/or environmental conditions, (iii)

compendium (semi-perturbation) data, and (iv) perturbation data.

This study uses de-novo methods based on statistical association

[11,12,22–24] because they are state-of-the-art [19] and are most

prevalent in the community. In the course of this study, the

following four questions are addressed: First, how accurately can

one infer genome-scale networks with statistical association-based

de-novo methods? Second, which datasets/data designs should be

Figure 1. Construction of gene regulatory networks by integrating targeted perturbation data with binding data. The relations in
constructed gene regulatory network correspond to direct regulatory interactions.
doi:10.1371/journal.pone.0106479.g001

Table 1. Assessment of currently available genome-scale gold-standard networks used by prior gene network reverse-engineering
studies.

Gold-standard Description Limitations Used by

#1 E. Coli network from RegulonDB, a curated database of
regulatory interactions obtained through literature search [50]

N Unknown quality DREAM2 [17], DREAM5
[18], [19], [21]

N Heterogeneous data sources and
experimental methods

#2 S. Cerevisiae network from binding data [51] N Binding relations can be non-functional [28] [20]

N Higher quality binding data exists [33]
and is utilized in gold-standard #3

#3 S. Cerevisiae network from binding data [33] N Binding relations can be non-functional [28] DREAM5 [18], [19], [21]

#4 S. Cerevisiae network from YEASTRACT, a curated database of
regulatory interactions obtained through literature search [52,53]

N Unknown quality DREAM5 [18]

N Heterogeneous data sources and
experimental methods

#5 S. Cerevisiae network from deletion mutants [54] N Inferred transcription relations can be indirect DREAM5 [18]

doi:10.1371/journal.pone.0106479.t001
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used for network inference? Third, which statistical methods lead

to better accuracy? Fourth, is it possible to identify sub-networks in

the entire network that can be reconstructed with high accuracy?

To make conclusions of the study more useful to the community,

results for 7 commonly used performance metrics are reported.

Results

Gold-standard gene regulatory networks integrate
transcription factor-gene binding with perturbation
(deletion mutants) data

The analysis of targeted perturbation (deletion mutants) data

described in the Methods section resulted in a network with

991,444 regulatory relations involving 5,395 genes, including 118

transcription factors (Spreadsheet S1).

The analysis of binding data described in the Methods section

resulted in the following three networks: Binding network #1

(most conservative) involves 2,075 genes (including 114 transcrip-

tion factors) and 4,034 binding relations. Binding network #2

(intermediate) involves 3,113 genes (including 115 transcription

factors) and 8,392 binding relations. Binding network #3 (most

liberal) involves 3,955 genes (including 116 transcription factors)

and 13,050 binding relations. All identified binding interactions

are provided in Spreadsheet S2.

Integration of binding and perturbation data resulted in three

gold-standard networks with direct regulatory interactions (Ta-
ble 2). Identified direct regulatory interactions are listed in

Spreadsheet S3. Figures 2 and 3 visualize the gold-standard

network #1 for all genes and only transcription factors,

respectively. Figure 4 presents a topological analysis of that

gold-standard network. Similar data is provided for gold-standard

networks #2 and #3 in Figures S1–S6.

Assessment of the accuracy of network learning with
sensitivity and specificity metrics

The network reconstruction results presented below were

obtained from the most conservative gold-standard network #1

(Table 2). Results from the remaining two gold-standard

networks are similar and are provided in Tables S4–S9.

Table 3 provides values of sensitivity and specificity and

Table 4 provides a combined sensitivity/specificity Euclidean

distance-based metric (see Methods) for 18 statistical approaches

for reverse-engineering applied to 13 datasets, resulting in 234

inferred networks (see Table S1 for a colored version of Table 3
and Table 4, where color denotes ranking of performances). The

best result for combined sensitivity/specificity metric ( = 0.64,

corresponding to sensitivity = 0.52 and specificity = 0.58) is

achieved in Hughes2 dataset by application of bivariate analysis

with G2 test and 5% alpha threshold. The best 5% ranking results

(see Table S1 part B) according to the combined metric (12

networks out of 234) correspond to bivariate analysis (10 networks)

and GLL with conditioning on one gene (2 networks). In terms of

datasets, 4 out of 12 best networks originate from Hughes1, 4 from

Hughes2, 2 from GPL90, and 2 from Gasch. There is a large

variability in accuracy of statistical approaches averaged over 13

datasets, and the most accurate approaches are bivariate

(combined metric = 0.75–0.77 versus 0.85–0.98 for other meth-

ods). The variability in accuracy of datasets averaged over 18

statistical approaches is smaller, and the best results are achieved

in Gresham (combined metric = 0.82), Smith (0.84), and

Holstege4 (0.84) datasets (versus 0.85–0.89 for the remaining

datasets). If we perform averaging over all statistical approaches

and datasets belonging to the same data type, the best accuracy is

achieved by observational data due to change in time/environ-

ment and by compendium data (combined metric = 0.86),

followed by perturbation data (0.87) and observational data

consisting of biological wild-type replicates (0.88).

Figure 5 provides an additional visualization of sensitivity/

specificity pairs for 18 statistical approaches 613 datasets and the

corresponding ROC curve [25,26] of the Pareto frontier [27]. The

resulting area under ROC curve (AUROC) is 0.546 (p-value

= 1.1261027). Figure 6 shows ROC curves and reports AUROC

for each data type separately. It follows that observational data

consisting of biological wild-type replicates leads to least accurate

networks with AUROC consistent with prediction by chance

(AUROC = 0.499, p-value = 0.55). Other data types lead to small

but statistically significant AUROC values, with the best result

achieved by perturbation data (AUROC = 0.541, p-value

= 1.7361026), followed by compendium data (AUROC

= 0.536, p-value = 2.5761025) and observational data due to

change in time/environment (AUROC = 0.521, p-value = 0.01).

Assessment of the accuracy of network learning with
positive and negative predictive value metrics

Table 5 provides values of positive predictive value (PPV) and

negative predictive value (NPV) and Table 6 provides a

combined PPV/NPV Euclidean distance-based metric (see Meth-

ods) for 18 statistical approaches for reverse-engineering applied to

13 datasets, resulting in 234 inferred networks (see Table S2 for a

colored version of Table 5 and Table 6, where color denotes

ranking of performances). The best result for combined PPV/NPV

metric ( = 0.93, corresponding to PPV = 0.07 and NPV = 0.98) is

achieved in the Smith dataset by application of GLL with a Z test,

conditioning on 3 genes and using an AND rule. The best 5%

ranking results (see Table S2 part B) according to the combined

metric (17 networks out of 234) correspond to GLL with

conditioning on either 2 or 3 genes. In terms of datasets, 5 out

of 17 best networks originate from Yeung, 3 from Smith, 3 from

Gasch, 3 from Hughes2, and the remaining 3 originate from

M3D, GPL90, and Holstege4. There is a small variability in

accuracy of statistical approaches averaged over 13 datasets, and

the most accurate approach is GLL with Z test, conditioning on 3

genes and using an AND rule (combined metric = 0.96 versus

0.97–0.98 for other methods). The variability in accuracy of

datasets averaged over 18 statistical approaches is even smaller,

and the best results are achieved in Gasch, Smith, Yeung, and

Hughes2 datasets (combined metric = 0.97 versus 0.98 for the

remaining datasets). If we perform averaging over all statistical

approaches and datasets belonging to the same data type, the best

accuracy is achieved by observational data due to change in time/

environment (0.97), followed by other data types (0.98).

Assessment of the accuracy of network learning with
recall and precision metrics

Table 7 provides values of recall (sensitivity) and precision

(PPV) and Table 8 provides a combined recall/precision

Euclidean distance-based metric (see Methods) for 18 statistical

approaches for reverse-engineering applied to 13 datasets,

resulting in 234 inferred networks (see Table S3 for a colored

version of Table 7 and Table 8, where color denotes ranking of

performances). The best results for combined recall/precision

metric ( = 0.99, corresponding to recall = 0.89–0.91 and precision

= 0.02) are achieved in GPL90 and M3D datasets by application

of bivariate analysis with G2 test. The best 5% ranking results (see

Table S3 part B) according to the combined metric (17 networks

out of 234) also correspond to bivariate analysis. In terms of

datasets, 5 out of 17 best networks originate from GPL90, 3 from
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M3D, 3 from Yeung, 3 from Smith, and 3 from Holstege2. There

is a large variability in accuracy of statistical approaches averaged

over 13 datasets, and the most accurate approaches are bivariate

(combined metric = 1.04–1.09 versus 1.27–1.38 for other meth-

ods). The variability in accuracy of datasets averaged over 18

statistical approaches is smaller, and the best results are achieved

in GPL90 (combined metric = 1.19), Smith (1.20), and Gresham

(1.20) datasets (versus 1.21–1.31 for the remaining datasets). If we

perform averaging over all statistical approaches and datasets

belonging to the same data type, the best accuracy is achieved by

compendium data (1.20), followed by observational data due to

change in time/environment (1.23), observational data consisting

of biological wild-type replicates (1.26), and perturbation data

(1.27).

Connectivity of transcription factors is correlated with
the accuracy of learning their sub-networks

Despite the overall low but statistically significant accuracies of

gene network reverse-engineering in S. cerevisiae, some pathways

or sub-networks can be learned with high accuracy from this data.

For example, application of GLL method (with Fisher’s Z-test and

conditioning on one gene) to Yeung dataset allowed us to learn a

sub-network of direct regulatory interactions of transcription factor

GCN4 (containing 44 genes) with sensitivity = 0.50, specificity

= 0.91, PPV = 0.24, NPV = 0.97, which is statistically significant

after adjustment for multiple comparison (Figure S7). We

hypothesize that total connectivity of transcription factors (assessed

either in gold-standard or inferred networks) is correlated with the

reconstruction accuracy of their sub-networks. If this hypothesis is

true, the connectivity measure may be used to identify transcrip-

tion factors whose sub-networks can be learned accurately by de
novo reverse-engineering methods.

The left panel of Figure 7 provides a scatter-plot showing

significant correlation of transcription factor connectivity with the

accuracy (combined PPV/NPV) of de novo reconstructing

transcription factor sub-networks (that contain only direct

regulatory interactions of each transcription factor). The right

panel of Figure 7 shows the null distribution for assessing

statistical significance of this correlation. Table 9 reports for

each reverse-engineering approach and accuracy metric, the

number of networks (in total we have 13 networks that were

Figure 2. Gold-standard gene regulatory network #1. Transcription factors are shown with large blue circles, and other genes are shown with
small green circles. Edges in the network represent direct regulatory interactions. Inhibiting edges are shown with red, and excitatory edges are
shown with black.
doi:10.1371/journal.pone.0106479.g002
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derived from 13 microarray gene expression datasets) with

statistically significant correlation between connectivity of tran-

scription factors and accuracy of reconstructing their sub-

networks. As can be seen, for most reverse-engineering methods

and accuracy metrics, connectivity of transcription factors in the

inferred networks is significantly correlated with the reconstruction

accuracy of their sub-networks. The correlations are sometimes

robust and hold in multiple networks inferred from various

datasets. However, the transcription factor connectivity assessed in

the gold-standard networks correlates less robustly with the

accuracy metrics; especially the combined sensitivity/specificity

is rarely correlated. Overall, the correlations are typically negative,

which implies that reverse-engineering methods can achieve

higher accuracy (using each of the three combined distance

metrics) for transcription factors with larger connectivity (i.e., more

direct regulatory interactions). This behavior is particularly

interesting for the combined sensitivity/specificity metric which

is not influenced by the density of the network.

Methods and Materials

Construction of the gold-standard networks of direct
gene regulatory interactions

The general process for construction of gold-standard networks

with direct gene regulatory interactions is illustrated in Figure 1.

Two types of genome-scale data are required for network

construction: (i) targeted perturbation data with gene knocks-

outs/deletions or over-expressions that can be obtained by

techniques for interference with RNA such as shRNA/siRNA or

inducible promoters, and (ii) binding data that can be obtained by

chromatin immunoprecipitation (ChIP) methods such as ChIP-

chip/ChIP-seq. Targeted perturbation data allows identification of

regulatory targets, while binding data allows identification of

binding targets of transcription factors. Using either data alone is

not sufficient to infer direct regulatory relations because regulatory

interactions resulting from targeted perturbation data may be

either direct or indirect, and likewise binding interactions can be

either functional or not [28]. Therefore, we integrated regulatory

and binding targets to obtain the set of direct regulatory targets

which are graphically represented in gene regulatory networks.

In the current study, we used targeted perturbation data

obtained by a co-author of this study (P.K.). The targeted

perturbation data was obtained from 1,484 gene deletion (mutant)

experiments. Full details of experimental procedures, normaliza-

tion procedures and statistical analyses are described in [29]. In

summary, mutants from independent cultures were analyzed on

dual-channel 70-mer oligonucleotide arrays using a batch of wild-

type RNA as a common reference. In addition, wild-type profiles

were obtained to statistically assess differences with mutant

profiles. All gene expression profiles were normalized by loess

method [30] followed by gene-specific dye-bias correction [31].

Differentially expressed genes between wild-type and mutant

profiles were determined using limma [32] at 5% alpha level

adjusted for multiple comparisons using the methodology of

[23,24].

Figure 3. Direct regulatory interactions between transcription factors in gold-standard gene regulatory network #1. Inhibiting edges
are shown with red, and excitatory edges are shown with black.
doi:10.1371/journal.pone.0106479.g003
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For the binding data, we used a previously published ChIP-chip

dataset characterizing binding activity of 203 transcription factors

to genes [33]. The original study [33] suggested using two

thresholds (0.001 and 0.005) for assessing significance of binding

interactions. To further filter false-positive binding relations, the

study [33] suggested assessing evolutionary conservation of

binding sequences in 0, 1, or 2 of the related Saccharomyces
species. The primary approach used in the current study for

Figure 4. Topological analysis of gold-standard gene regulatory network #1. The analysis was performed in Cytoscape with
NetworkAnalyzer.
doi:10.1371/journal.pone.0106479.g004

Table 2. Overlapping identified binding with regulatory relations results in gold-standard networks with direct regulatory
relations.

Gold-standard network # Binding Network
Regulatory
network

Gold-standard network (integrating binding
and regulatory networks)

Binding
threshold

Evolutionary
conservation of
binding sequences
(# of species)

# of edges
(binding
relations)

# of edges
(regulatory
relations)

# of edges
(direct regulatory
relations)

Statistical significance of
the overlap (p-value from
hypergeometric test)

1 0.001 2 4,034 991,444 1,083 ,10216

2 0.005 1 8,392 1,785 ,10216

3 0.005 0 13,050 2,403 ,10216

doi:10.1371/journal.pone.0106479.t002
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identification of binding relations is based on the most conserva-

tive analysis of the above ChIP-chip data with binding threshold

= 0.001 and conservation in 2 species (resulting in ‘‘binding

network #1’’). In addition, we report in Supporting Information

results for two other approaches: binding threshold = 0.005 and

conservation in 1 species (resulting in ‘‘binding network #2’’) and

binding threshold = 0.005 without conservation requirement

(resulting in ‘‘binding network #3’’).

Finally, before the identified regulatory and binding relations

were overlapped, all gene names were converted to systematic

gene names using Saccharomyces Genome Database [34]. Any

gene that has no mapping or ambiguous mapping to a systematic

name was removed. This resulted in 5,395 common genes

between targeted perturbation and binding data.

Datasets for gene network reverse-engineering
We obtained 13 datasets to be used for reverse-engineering of S.

cerevisiae gene regulatory networks. Datasets and their character-

istics are listed in Table 10. The datasets span over 4 data types:

(i) observational data consisting of biological wild-type replicates,

(ii) observational data obtained by changing time and/or

environmental conditions, (iii) compendium (semi-perturbation)

data, and (iv) perturbation data. Data types (i) and (ii) contain

samples collected by passive observation of the system without

specific interference on the levels of genes. Data type (iii) was

obtained by merging data from a large number of studies available

in major public microarray data repositories. Those studies were

predominantly perturbations-based (with gene knock-outs/over-

expressions), and therefore we refer to such compendium data as

‘‘semi-perturbation’’. Data type (iv) originates from gene knock-

out/over-expression experiments. Out of 13 datasets used in the

study, the following two are novel and are thus described in more

detail below.

Dataset Gresham was obtained by a co-author of this study

(D.G.), and it describes the transcriptional response of 5,590 S.

cerevisiae genes to dynamic changes in environmental nitrogen.

Cells in nitrogen limited chemostats were treated with an excess of

nitrogen, and the transcriptional response was assessed at different

time intervals after the nitrogen treatment, resulting in 100 gene

expression profiles [35].

Dataset GPL90 was compiled by using all microarray chips

from Affymetrix Yeast Genome S98 Array available in GEO [4].

Specifically, 1,509 chips with raw data (CEL files) were

downloaded from GEO on 08/21/2013. RMA normalization

[36] was performed on all samples using Matlab function affyrma.

Data for 39 out of 1,509 chips could not be processed and

therefore discarded. The remaining data for 1,470 chips were

processed as one batch. Affymetrix probe sets were mapped to

gene names by a customized Matlab script using the platform

annotation table for GPL90 (available on GEO) as reference. A

total number of 6,740 genes over 1,470 samples were obtained

upon completion of the process described above. The resulting

dataset is provided in Spreadsheet S4.

Statistical methods for gene network reverse-
engineering

This study uses de-novo statistical association-based approaches

for network reverse-engineering [11,12,22–24] because they are

state-of-the-art [19] and are most prevalent in the community.

This is a very broad class of methods and it encompasses both

traditional bivariate approaches (that consider only two genes/

variables at a time) and multivariate approaches (that perform

conditioning based on other genes/variables). For the latter

methods we use causal graph-based techniques from the Gener-

alized Local Learning (GLL) algorithmic family [11,12]. Under

fairly broad distributional assumptions, GLL provably discovers

genes/variables that are direct causes and direct effects of the

gene/variable of interest [11,12], and is known to be one of the

best performing methods for de novo gene network reverse-

engineering [19].

When we infer gene networks in this study, we follow the

‘‘divide-and-conquer’’ (also known as ‘‘local-to-global’’) approach

whereby we first iteratively run each method to find direct

upstream or downstream regulatory relations for each gene in the

dataset, and then piece together the network. It may happen that

the algorithm run on gene X may output that Y has a direct

regulatory relation with X, however when the algorithm is run on

gene Y, X does not belong to its output. We thus apply one of the

two post-processing steps to piece together the network: (i) ‘‘AND’’

rule which implies that if the algorithm run on X outputs Y and if

the algorithm run on Y outputs X, then X and Y have an edge in

the resulting network, and (ii) ‘‘OR’’ rule which implies that if the

algorithm run on X outputs Y or if the algorithm run on Y outputs

X, then X and Y have an edge in the resulting network.

Application of AND rule results in sparser networks, and OR rule

results in denser networks.

The list of 18 approaches for network reverse-engineering is

given in Table 11. Methods are based on two statistical

association tests: Fisher’s Z [37] and G2 [38] test. The latter test

requires application to categorical data, and therefore we

discretized gene expression data into ternary by standardizing it

to mean 0 and standard deviation 1 and considering three

categories: smaller than -1, between -1 and 1, and greater than 1.

Finally, we note that all of the above approaches used in this

study output undirected networks. Inference of directed networks

from data remains a more challenging problem that is beyond the

scope of the present study.

Figure 5. ROC curve of the Pareto frontier for sensitivity/
specificity pairs obtained by application of 18 network
reverse-engineering approaches to 13 datasets.
doi:10.1371/journal.pone.0106479.g005
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Metrics to assess accuracy of gene network reverse-
engineering

To assess accuracy of the network reverse-engineering, we used

4 core and 3 combined performance metrics. The core metrics

used are: positive predictive value (PPV, also known as precision),

negative predictive value (NPV), sensitivity (also known as recall),

and specificity. PPV measures the probability that a regulatory

interaction discovered by the algorithm exists in the gold-standard

(i.e., the precision of the output network), while NPV measures the

probability that an interaction not predicted by the algorithm does

not exist in the gold-standard. Sensitivity measures the proportion

of interactions in the gold-standard that are discovered by the

algorithm (i.e., the completeness of the output network), whereas

specificity measures the proportion of interactions absent in the

gold-standard that are not predicted by the algorithm. The value

of core metrics ranges from 0 to 1, with larger values

corresponding to a more accurate algorithm.

Each of the three combined metrics was based on the two core

antagonistic metrics and measured the Euclidean distance from

the optimal algorithms with (PPV = 1, NPV = 1), (sensitivity = 1,

specificity = 1), and (recall = 1, precision = 1):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{PPV )2z(1{NPV )2

q
,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1{sensitivity)2z(1{specificity)2
q

, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{recall)2z(1{precision)2

q
, respectively. These metrics take

values between 0 and
ffiffiffi
2
p

, where 0 denotes performance of the

optimal algorithm and
ffiffiffi
2
p

denotes performance of the worst

possible algorithm. A smaller value for either of these two metrics

implies a more accurate algorithm.

Statistical significance of the output networks was assessed using

the hyper-geometric test at 5% alpha level adjusted for multiple

comparisons using the methodology of [23,24]. The adjustment

was performed over 3 (gold-standards) 618 (methods) 613

(datasets) = 702 applications of network reverse-engineering

algorithms.

Assessing correlation between connectivity of
transcription factors and the accuracy of learning their
sub-networks

For every transcription factor we measured its total connectivity

(either in the inferred or gold-standard network) and accuracy of

learning its sub-network measured by one of the three combined

metrics mentioned in the previous subsection. Then we measured

correlation using Spearman correlation coefficient and assessed

significance of correlation using exact statistical test following the

theory of Good [39]. The exact test is essential because

transcription factors are not independent of each other. This test

Figure 6. ROC curves of the Pareto frontier for sensitivity/specificity pairs obtained by application of 18 network reverse-
engineering approaches to datasets of each type.
doi:10.1371/journal.pone.0106479.g006

De-Novo Learning of Genome-Scale Regulatory Networks in S. cerevisiae

PLOS ONE | www.plosone.org 10 September 2014 | Volume 9 | Issue 9 | e106479



T
a

b
le

5
.

P
o

si
ti

ve
p

re
d

ic
ti

ve
va

lu
e

(P
P

V
)

an
d

n
e

g
at

iv
e

p
re

d
ic

ti
ve

va
lu

e
(N

P
V

).

O
b

se
rv

a
ti

o
n

a
l

(B
io

lo
g

ic
a

l
R

e
p

li
ca

te
s)

O
b

se
rv

a
ti

o
n

a
l

(E
n

v
ir

o
n

m
e

n
t/

T
im

e
)

S
e

m
i-

e
x

p
e

ri
m

e
n

ta
l

(C
o

m
p

e
n

d
iu

m
)

E
x

p
e

ri
m

e
n

ta
l

S
ta

ti
st

ic
s

C
o

n
d

it
io

n
in

g
P

o
st

-P
ro

ce
ss

in
g

H
o

ls
te

g
e

1
H

o
ls

te
g

e
2

G
re

sh
a

m
G

a
sc

h
S

m
it

h
Y

e
u

n
g

M
3

D
G

P
L

9
0

H
u

g
h

e
s1

H
u

g
h

e
s2

H
u

H
o

ls
te

g
e

3
H

o
ls

te
g

e
4

Fi
sh

e
r’

s
Z

N
o

n
e

FD
R

,
‘‘A

N
D

’’
ru

le
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

9
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8

Fi
sh

e
r’

s
Z

N
o

n
e

FD
R

,
‘‘O

R
’’

ru
le

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
9

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
9

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

Fi
sh

e
r’

s
Z

N
o

n
e

N
o

n
e

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
9

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
9

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

Fi
sh

e
r’

s
Z

1
g

e
n

e
‘‘A

N
D

’’
ru

le
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8

Fi
sh

e
r’

s
Z

1
g

e
n

e
‘‘O

R
’’

ru
le

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

2
|0

.9
8

0
.0

3
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

3
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

3
|0

.9
8

Fi
sh

e
r’

s
Z

2
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

3
|0

.9
8

0
.0

4
|0

.9
8

0
.0

5
|0

.9
8

0
.0

4
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

4
|0

.9
8

0
.0

2
|0

.9
8

0
.0

3
|0

.9
8

0
.0

4
|0

.9
8

Fi
sh

e
r’

s
Z

2
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
4

|0
.9

8
0

.0
4

|0
.9

8
0

.0
3

|0
.9

8
0

.0
3

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8

Fi
sh

e
r’

s
Z

3
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.0

2
|0

.9
8

0
.0

3
|0

.9
8

0
.0

1
|0

.9
8

0
.0

5
|0

.9
8

0
.0

7
|0

.9
8

0
.0

5
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

5
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

5
|0

.9
8

Fi
sh

e
r’

s
Z

3
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
5

|0
.9

8
0

.0
4

|0
.9

8
0

.0
4

|0
.9

8
0

.0
3

|0
.9

8
0

.0
3

|0
.9

8
0

.0
4

|0
.9

8
0

.0
3

|0
.9

8
0

.0
3

|0
.9

8
0

.0
3

|0
.9

8

G
2

N
o

n
e

FD
R

,
‘‘A

N
D

’’
ru

le
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

9
0

.0
2

|0
.9

7
0

.0
2

|0
.9

8
0

.0
2

|0
.9

9
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8

G
2

N
o

n
e

FD
R

,
‘‘O

R
’’

ru
le

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
9

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
9

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
9

G
2

N
o

n
e

N
o

n
e

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
9

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
9

0
.0

2
|0

.9
8

0
.0

2
|0

.9
9

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
9

G
2

1
g

e
n

e
‘‘A

N
D

’’
ru

le
0

.0
1

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
3

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8

G
2

1
g

e
n

e
‘‘O

R
’’

ru
le

0
.0

1
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

3
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

G
2

2
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.0

1
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

4
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

G
2

2
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.0
1

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8

G
2

3
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.0

1
|0

.9
8

0
.0

2
|0

.9
8

0
.0

1
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

4
|0

.9
8

0
.0

3
|0

.9
8

0
.0

4
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

3
|0

.9
8

0
.0

2
|0

.9
8

0
.0

2
|0

.9
8

G
2

3
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.0
1

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
3

|0
.9

8
0

.0
3

|0
.9

8
0

.0
2

|0
.9

8
0

.0
2

|0
.9

8

C
e

lls
w

it
h

b
o

ld
fo

n
t

co
rr

e
sp

o
n

d
to

e
xp

e
ri

m
e

n
ts

w
it

h
st

at
is

ti
ca

lly
si

g
n

if
ic

an
t

re
co

n
st

ru
ct

io
n

o
f

re
g

u
la

to
ry

n
e

tw
o

rk
s.

Se
e

T
a

b
le

1
1

fo
r

ab
b

re
vi

at
io

n
s

o
f

ro
w

la
b

e
ls

.
Se

e
T

a
b

le
S

2
p

ar
t

A
fo

r
a

co
lo

re
d

ve
rs

io
n

o
f

th
is

ta
b

le
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

6
4

7
9

.t
0

0
5

De-Novo Learning of Genome-Scale Regulatory Networks in S. cerevisiae

PLOS ONE | www.plosone.org 11 September 2014 | Volume 9 | Issue 9 | e106479



T
a

b
le

6
.

Eu
cl

id
e

an
d

is
ta

n
ce

fr
o

m
th

e
o

p
ti

m
al

al
g

o
ri

th
m

w
it

h
P

P
V

=
1

an
d

N
P

V
=

1
.

O
b

se
rv

a
ti

o
n

a
l

(B
io

lo
g

ic
a

l
R

e
p

li
ca

te
s)

O
b

se
rv

a
ti

o
n

a
l

(E
n

v
ir

o
n

m
e

n
t/

T
im

e
)

S
e

m
i-

E
x

p
e

ri
m

e
n

ta
l

(C
o

m
p

e
n

d
iu

m
)

E
x

p
e

ri
m

e
n

ta
l

M
e

th
o

d
A

v
e

ra
g

e

S
ta

ti
st

ic
s

C
o

n
d

it
io

n
in

g
P

o
st

-P
ro

ce
ss

in
g

H
o

ls
te

g
e

1
H

o
ls

te
g

e
2

G
re

sh
a

m
G

a
sc

h
S

m
it

h
Y

e
u

n
g

M
3

D
G

P
L

9
0

H
u

g
h

e
s1

H
u

g
h

e
s2

H
u

H
o

ls
te

g
e

3
H

o
ls

te
g

e
4

Fi
sh

e
r’

s
Z

N
o

n
e

FD
R

,
‘‘A

N
D

’’
ru

le
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8

Fi
sh

e
r’

s
Z

N
o

n
e

FD
R

,
‘‘O

R
’’

ru
le

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

Fi
sh

e
r’

s
Z

N
o

n
e

N
o

n
e

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

Fi
sh

e
r’

s
Z

1
g

e
n

e
‘‘A

N
D

’’
ru

le
0

.9
8

0
.9

8
0

.9
8

0
.9

7
0

.9
7

0
.9

8
0

.9
7

0
.9

8
0

.9
8

0
.9

7
0

.9
8

0
.9

8
0

.9
7

0
.9

8

Fi
sh

e
r’

s
Z

1
g

e
n

e
‘‘O

R
’’

ru
le

0
.9

8
0

.9
8

0
.9

8
0

.9
7

0
.9

7
0

.9
8

0
.9

7
0

.9
8

0
.9

8
0

.9
7

0
.9

8
0

.9
8

0
.9

7
0

.9
8

Fi
sh

e
r’

s
Z

2
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.9

8
0

.9
8

0
.9

7
0

.9
6

0
.9

5
0

.9
6

0
.9

7
0

.9
7

0
.9

7
0

.9
6

0
.9

8
0

.9
7

0
.9

7
0

.9
7

Fi
sh

e
r’

s
Z

2
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.9
8

0
.9

7
0

.9
8

0
.9

6
0

.9
6

0
.9

7
0

.9
7

0
.9

7
0

.9
8

0
.9

7
0

.9
8

0
.9

8
0

.9
7

0
.9

7

Fi
sh

e
r’

s
Z

3
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.9

8
0

.9
7

0
.9

9
0

.9
5

0
.9

3
0

.9
5

0
.9

7
0

.9
7

0
.9

7
0

.9
5

0
.9

7
0

.9
7

0
.9

5
0

.9
6

Fi
sh

e
r’

s
Z

3
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.9
8

0
.9

8
0

.9
8

0
.9

7
0

.9
6

0
.9

6
0

.9
6

0
.9

7
0

.9
7

0
.9

6
0

.9
7

0
.9

7
0

.9
7

0
.9

7

G
2

N
o

n
e

FD
R

,
‘‘A

N
D

’’
ru

le
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8

G
2

N
o

n
e

FD
R

,
‘‘O

R
’’

ru
le

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

G
2

N
o

n
e

N
o

n
e

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
8

G
2

1
g

e
n

e
‘‘A

N
D

’’
ru

le
0

.9
9

0
.9

8
0

.9
8

0
.9

7
0

.9
7

0
.9

8
0

.9
8

0
.9

8
0

.9
7

0
.9

7
0

.9
7

0
.9

8
0

.9
8

0
.9

8

G
2

1
g

e
n

e
‘‘O

R
’’

ru
le

0
.9

9
0

.9
8

0
.9

8
0

.9
7

0
.9

8
0

.9
8

0
.9

8
0

.9
8

0
.9

8
0

.9
7

0
.9

7
0

.9
8

0
.9

8
0

.9
8

G
2

2
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.9

9
0

.9
8

0
.9

8
0

.9
7

0
.9

7
0

.9
6

0
.9

7
0

.9
7

0
.9

7
0

.9
7

0
.9

7
0

.9
8

0
.9

8
0

.9
7

G
2

2
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.9
9

0
.9

8
0

.9
8

0
.9

7
0

.9
8

0
.9

7
0

.9
8

0
.9

8
0

.9
8

0
.9

7
0

.9
7

0
.9

8
0

.9
8

0
.9

8

G
2

3
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.9

9
0

.9
8

0
.9

9
0

.9
7

0
.9

7
0

.9
6

0
.9

7
0

.9
6

0
.9

7
0

.9
7

0
.9

7
0

.9
8

0
.9

8
0

.9
7

G
2

3
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.9
9

0
.9

8
0

.9
8

0
.9

7
0

.9
8

0
.9

7
0

.9
8

0
.9

7
0

.9
8

0
.9

7
0

.9
7

0
.9

8
0

.9
8

0
.9

8

D
a

ta
se

t
A

v
e

ra
g

e
0

.9
8

0
.9

8
0

.9
8

0
.9

7
0

.9
7

0
.9

7
0

.9
8

0
.9

8
0

.9
8

0
.9

7
0

.9
8

0
.9

8
0

.9
8

D
a

ta
ty

p
e

A
v

e
ra

g
e

0
.9

8
0

.9
7

0
.9

8
0

.9
8

C
e

lls
w

it
h

b
o

ld
fo

n
t

co
rr

e
sp

o
n

d
to

e
xp

e
ri

m
e

n
ts

w
it

h
st

at
is

ti
ca

lly
si

g
n

if
ic

an
t

re
co

n
st

ru
ct

io
n

o
f

re
g

u
la

to
ry

n
e

tw
o

rk
s.

Se
e

T
a

b
le

1
1

fo
r

ab
b

re
vi

at
io

n
s

o
f

ro
w

la
b

e
ls

.
Se

e
T

a
b

le
S

2
p

ar
t

B
fo

r
a

co
lo

re
d

ve
rs

io
n

o
f

th
is

ta
b

le
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

6
4

7
9

.t
0

0
6

De-Novo Learning of Genome-Scale Regulatory Networks in S. cerevisiae

PLOS ONE | www.plosone.org 12 September 2014 | Volume 9 | Issue 9 | e106479



T
a

b
le

7
.

R
e

ca
ll

(s
e

n
si

ti
vi

ty
)

an
d

p
re

ci
si

o
n

(P
P

V
).

O
b

se
rv

a
ti

o
n

a
l

(B
io

lo
g

ic
a

l
R

e
p

li
ca

te
s)

O
b

se
rv

a
ti

o
n

a
l

(E
n

v
ir

o
n

m
e

n
t/

T
im

e
)

S
e

m
i-

e
x

p
e

ri
m

e
n

ta
l

(C
o

m
p

e
n

d
iu

m
)

E
x

p
e

ri
m

e
n

ta
l

S
ta

ti
st

ic
s

C
o

n
d

it
io

n
in

g
P

o
st

-P
ro

ce
ss

in
g

H
o

ls
te

g
e

1
H

o
ls

te
g

e
2

G
re

sh
a

m
G

a
sc

h
S

m
it

h
Y

e
u

n
g

M
3

D
G

P
L

9
0

H
u

g
h

e
s1

H
u

g
h

e
s2

H
u

H
o

ls
te

g
e

3
H

o
ls

te
g

e
4

Fi
sh

e
r’

s
Z

N
o

n
e

FD
R

,
‘‘A

N
D

’’
ru

le
0

.6
3

|0
.0

2
0

.7
9

|0
.0

2
0

.5
8

|0
.0

2
0

.4
9

|0
.0

2
0

.7
6

|0
.0

2
0

.7
5

|0
.0

2
0

.7
4

|0
.0

2
0

.7
8

|0
.0

2
0

.4
3

|0
.0

2
0

.3
5

|0
.0

2
0

.3
3

|0
.0

2
0

.7
3

|0
.0

2
0

.7
1

|0
.0

2

Fi
sh

e
r’

s
Z

N
o

n
e

FD
R

,
‘‘O

R
’’

ru
le

0
.6

5
|0

.0
2

0
.8

1
|0

.0
2

0
.6

2
|0

.0
2

0
.5

3
|0

.0
2

0
.8

0
|0

.0
2

0
.7

7
|0

.0
2

0
.7

6
|0

.0
2

0
.7

9
|0

.0
2

0
.4

5
|0

.0
2

0
.3

8
|0

.0
2

0
.3

6
|0

.0
2

0
.7

4
|0

.0
2

0
.7

2
|0

.0
2

Fi
sh

e
r’

s
Z

N
o

n
e

N
o

n
e

0
.6

8
|0

.0
2

0
.8

2
|0

.0
2

0
.6

5
|0

.0
2

0
.5

7
|0

.0
2

0
.8

1
|0

.0
2

0
.7

8
|0

.0
2

0
.7

7
|0

.0
2

0
.8

0
|0

.0
2

0
.5

2
|0

.0
2

0
.4

7
|0

.0
2

0
.4

3
|0

.0
2

0
.7

7
|0

.0
2

0
.7

5
|0

.0
2

Fi
sh

e
r’

s
Z

1
g

e
n

e
‘‘A

N
D

’’
ru

le
0

.0
6

|0
.0

2
0

.0
6

|0
.0

2
0

.0
3

|0
.0

2
0

.0
7

|0
.0

3
0

.1
0

|0
.0

3
0

.1
1

|0
.0

2
0

.1
5

|0
.0

3
0

.2
0

|0
.0

2
0

.1
1

|0
.0

2
0

.1
1

|0
.0

3
0

.0
7

|0
.0

2
0

.1
2

|0
.0

2
0

.1
4

|0
.0

3

Fi
sh

e
r’

s
Z

1
g

e
n

e
‘‘O

R
’’

ru
le

0
.0

7
|0

.0
2

0
.0

7
|0

.0
2

0
.0

4
|0

.0
2

0
.0

7
|0

.0
3

0
.1

2
|0

.0
3

0
.1

1
|0

.0
2

0
.1

6
|0

.0
3

0
.2

1
|0

.0
2

0
.1

2
|0

.0
2

0
.1

2
|0

.0
3

0
.0

7
|0

.0
2

0
.1

3
|0

.0
2

0
.1

5
|0

.0
3

Fi
sh

e
r’

s
Z

2
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.0

1
|0

.0
2

0
.0

1
|0

.0
2

0
.0

1
|0

.0
3

0
.0

2
|0

.0
4

0
.0

3
|0

.0
5

0
.0

3
|0

.0
4

0
.0

3
|0

.0
3

0
.0

6
|0

.0
3

0
.0

3
|0

.0
3

0
.0

4
|0

.0
4

0
.0

2
|0

.0
2

0
.0

4
|0

.0
3

0
.0

3
|0

.0
4

Fi
sh

e
r’

s
Z

2
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.0
2

|0
.0

2
0

.0
2

|0
.0

3
0

.0
2

|0
.0

2
0

.0
3

|0
.0

4
0

.0
4

|0
.0

4
0

.0
5

|0
.0

3
0

.0
5

|0
.0

3
0

.0
8

|0
.0

3
0

.0
4

|0
.0

2
0

.0
5

|0
.0

3
0

.0
3

|0
.0

2
0

.0
5

|0
.0

2
0

.0
5

|0
.0

3

Fi
sh

e
r’

s
Z

3
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.0

1
|0

.0
2

0
.0

1
|0

.0
3

0
.0

0
|0

.0
1

0
.0

1
|0

.0
5

0
.0

3
|0

.0
7

0
.0

2
|0

.0
5

0
.0

1
|0

.0
3

0
.0

3
|0

.0
3

0
.0

2
|0

.0
3

0
.0

2
|0

.0
5

0
.0

1
|0

.0
3

0
.0

2
|0

.0
3

0
.0

2
|0

.0
5

Fi
sh

e
r’

s
Z

3
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.0
2

|0
.0

2
0

.0
1

|0
.0

2
0

.0
1

|0
.0

2
0

.0
2

|0
.0

3
0

.0
4

|0
.0

5
0

.0
4

|0
.0

4
0

.0
4

|0
.0

4
0

.0
5

|0
.0

3
0

.0
3

|0
.0

3
0

.0
4

|0
.0

4
0

.0
2

|0
.0

3
0

.0
4

|0
.0

3
0

.0
4

|0
.0

3

G
2

N
o

n
e

FD
R

,
‘‘A

N
D

’’
ru

le
0

.3
9

|0
.0

2
0

.6
2

|0
.0

2
0

.4
9

|0
.0

2
0

.4
3

|0
.0

2
0

.7
1

|0
.0

2
0

.8
0

|0
.0

2
0

.9
0

|0
.0

2
0

.8
9

|0
.0

2
0

.2
4

|0
.0

2
0

.3
2

|0
.0

2
0

.2
1

|0
.0

2
0

.6
9

|0
.0

2
0

.6
6

|0
.0

2

G
2

N
o

n
e

FD
R

,
‘‘O

R
’’

ru
le

0
.4

4
|0

.0
2

0
.6

6
|0

.0
2

0
.5

6
|0

.0
2

0
.5

0
|0

.0
2

0
.7

6
|0

.0
2

0
.8

2
|0

.0
2

0
.9

1
|0

.0
2

0
.9

0
|0

.0
2

0
.3

0
|0

.0
2

0
.3

9
|0

.0
2

0
.2

6
|0

.0
2

0
.7

2
|0

.0
2

0
.7

1
|0

.0
2

G
2

N
o

n
e

N
o

n
e

0
.5

0
|0

.0
2

0
.6

9
|0

.0
2

0
.6

0
|0

.0
2

0
.5

5
|0

.0
2

0
.7

9
|0

.0
2

0
.8

3
|0

.0
2

0
.9

1
|0

.0
2

0
.9

0
|0

.0
2

0
.4

3
|0

.0
2

0
.5

2
|0

.0
2

0
.3

6
|0

.0
2

0
.7

6
|0

.0
2

0
.7

6
|0

.0
2

G
2

1
g

e
n

e
‘‘A

N
D

’’
ru

le
0

.0
4

|0
.0

1
0

.1
4

|0
.0

2
0

.5
9

|0
.0

2
0

.0
4

|0
.0

3
0

.1
9

|0
.0

3
0

.2
5

|0
.0

2
0

.3
7

|0
.0

2
0

.4
7

|0
.0

2
0

.0
2

|0
.0

3
0

.0
2

|0
.0

3
0

.0
4

|0
.0

3
0

.1
4

|0
.0

2
0

.1
4

|0
.0

2

G
2

1
g

e
n

e
‘‘O

R
’’

ru
le

0
.0

4
|0

.0
1

0
.1

5
|0

.0
2

0
.6

0
|0

.0
2

0
.0

6
|0

.0
3

0
.2

2
|0

.0
2

0
.2

6
|0

.0
2

0
.3

9
|0

.0
2

0
.4

8
|0

.0
2

0
.0

4
|0

.0
2

0
.0

4
|0

.0
3

0
.0

5
|0

.0
3

0
.1

6
|0

.0
2

0
.1

7
|0

.0
2

G
2

2
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.0

4
|0

.0
1

0
.1

4
|0

.0
2

0
.5

2
|0

.0
2

0
.0

4
|0

.0
3

0
.1

9
|0

.0
3

0
.0

4
|0

.0
4

0
.0

6
|0

.0
3

0
.1

5
|0

.0
3

0
.0

2
|0

.0
3

0
.0

2
|0

.0
3

0
.0

4
|0

.0
3

0
.0

2
|0

.0
2

0
.1

4
|0

.0
2

G
2

2
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.0
4

|0
.0

1
0

.1
5

|0
.0

2
0

.6
0

|0
.0

2
0

.0
6

|0
.0

3
0

.2
2

|0
.0

2
0

.0
6

|0
.0

3
0

.0
9

|0
.0

2
0

.1
7

|0
.0

2
0

.0
4

|0
.0

2
0

.0
4

|0
.0

3
0

.0
5

|0
.0

3
0

.0
4

|0
.0

2
0

.1
7

|0
.0

2

G
2

3
g

e
n

e
s

‘‘A
N

D
’’

ru
le

0
.0

4
|0

.0
1

0
.0

9
|0

.0
2

0
.0

9
|0

.0
1

0
.0

3
|0

.0
3

0
.1

6
|0

.0
3

0
.0

4
|0

.0
4

0
.0

6
|0

.0
3

0
.0

6
|0

.0
4

0
.0

2
|0

.0
3

0
.0

2
|0

.0
3

0
.0

4
|0

.0
3

0
.0

2
|0

.0
2

0
.1

4
|0

.0
2

G
2

3
g

e
n

e
s

‘‘O
R

’’
ru

le
0

.0
4

|0
.0

1
0

.1
4

|0
.0

2
0

.2
8

|0
.0

2
0

.0
6

|0
.0

3
0

.2
1

|0
.0

2
0

.0
6

|0
.0

3
0

.0
9

|0
.0

2
0

.0
9

|0
.0

3
0

.0
4

|0
.0

2
0

.0
4

|0
.0

3
0

.0
5

|0
.0

3
0

.0
4

|0
.0

2
0

.1
7

|0
.0

2

C
e

lls
w

it
h

b
o

ld
fo

n
t

co
rr

e
sp

o
n

d
to

e
xp

e
ri

m
e

n
ts

w
it

h
st

at
is

ti
ca

lly
si

g
n

if
ic

an
t

re
co

n
st

ru
ct

io
n

o
f

re
g

u
la

to
ry

n
e

tw
o

rk
s.

Se
e

T
a

b
le

1
1

fo
r

ab
b

re
vi

at
io

n
s

o
f

ro
w

la
b

e
ls

.
Se

e
T

a
b

le
S

3
p

ar
t

A
fo

r
a

co
lo

re
d

ve
rs

io
n

o
f

th
is

ta
b

le
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

6
4

7
9

.t
0

0
7

De-Novo Learning of Genome-Scale Regulatory Networks in S. cerevisiae

PLOS ONE | www.plosone.org 13 September 2014 | Volume 9 | Issue 9 | e106479



T
a

b
le

8
.

Eu
cl

id
e

an
d

is
ta

n
ce

fr
o

m
th

e
o

p
ti

m
al

al
g

o
ri

th
m

w
it

h
Se

n
si

ti
vi

ty
=

1
an

d
P

P
V

=
1

.

O
b

se
rv

a
ti

o
n

a
l

(B
io

lo
g

ic
a

l
R

e
p

li
ca

te
s)

O
b

se
rv

a
ti

o
n

a
l

(E
n

v
ir

o
n

m
e

n
t/

T
im

e
)

S
e

m
i-

E
x

p
e

ri
m

e
n

ta
l

(C
o

m
p

e
n

d
iu

m
)

E
x

p
e

ri
m

e
n

ta
l

M
e

th
o

d
A

v
e

ra
g

e

S
ta

ti
st

ic
s

C
o

n
d

it
io

n
in

g
P

o
st

-P
ro

ce
ss

in
g

H
o

ls
te

g
e

1
H

o
ls

te
g

e
2

G
re

sh
a

m
G

a
sc

h
S

m
it

h
Y

e
u

n
g

M
3

D
G

P
L

9
0

H
u

g
h

e
s1

H
u

g
h

e
s2

H
u

H
o

ls
te

g
e

3
H

o
ls

te
g

e
4

Fi
sh

e
r’

s
Z

N
o

n
e

FD
R

,
‘‘A

N
D

’’
ru

le
1

.0
5

1
1

.0
7

1
.1

1
1

.0
1

1
.0

2
1

.0
2

1
.0

1
1

.1
4

1
.1

7
1

.1
9

1
.0

2
1

.0
2

1
.0

6

Fi
sh

e
r’

s
Z

N
o

n
e

FD
R

,
‘‘O

R
’’

ru
le

1
.0

4
1

1
.0

5
1

.0
9

1
1

.0
1

1
.0

1
1

1
.1

2
1

.1
6

1
.1

7
1

.0
2

1
.0

2
1

.0
5

Fi
sh

e
r’

s
Z

N
o

n
e

N
o

n
e

1
.0

3
1

1
.0

4
1

.0
7

1
1

.0
1

1
.0

1
1

1
.0

9
1

.1
1

1
.1

3
1

.0
1

1
.0

1
1

.0
4

Fi
sh

e
r’

s
Z

1
g

e
n

e
‘‘A

N
D

’’
ru

le
1

.3
6

1
.3

6
1

.3
8

1
.3

5
1

.3
2

1
.3

2
1

.2
9

1
.2

6
1

.3
2

1
.3

2
1

.3
6

1
.3

2
1

.3
1

.3
3

Fi
sh

e
r’

s
Z

1
g

e
n

e
‘‘O

R
’’

ru
le

1
.3

5
1

.3
5

1
.3

7
1

.3
4

1
.3

1
1

.3
2

1
.2

9
1

.2
6

1
.3

2
1

.3
1

1
.3

5
1

.3
1

1
.2

9
1

.3
2

Fi
sh

e
r’

s
Z

2
g

e
n

e
s

‘‘A
N

D
’’

ru
le

1
.3

9
1

.3
9

1
.3

9
1

.3
7

1
.3

6
1

.3
7

1
.3

7
1

.3
5

1
.3

7
1

.3
6

1
.3

9
1

.3
7

1
.3

7
1

.3
7

Fi
sh

e
r’

s
Z

2
g

e
n

e
s

‘‘O
R

’’
ru

le
1

.3
8

1
.3

8
1

.3
9

1
.3

7
1

.3
6

1
.3

6
1

.3
5

1
.3

4
1

.3
7

1
.3

5
1

.3
8

1
.3

6
1

.3
6

1
.3

7

Fi
sh

e
r’

s
Z

3
g

e
n

e
s

‘‘A
N

D
’’

ru
le

1
.3

9
1

.3
9

1
.4

1
1

.3
7

1
.3

5
1

.3
6

1
.3

8
1

.3
7

1
.3

8
1

.3
7

1
.3

8
1

.3
8

1
.3

6
1

.3
8

Fi
sh

e
r’

s
Z

3
g

e
n

e
s

‘‘O
R

’’
ru

le
1

.3
8

1
.3

9
1

.3
9

1
.3

8
1

.3
5

1
.3

6
1

.3
6

1
.3

6
1

.3
7

1
.3

6
1

.3
8

1
.3

7
1

.3
6

1
.3

7

G
2

N
o

n
e

FD
R

,
‘‘A

N
D

’’
ru

le
1

.1
6

1
.0

5
1

.1
1

1
.1

4
1

.0
2

1
0

.9
9

0
.9

9
1

.2
4

1
.1

9
1

.2
6

1
.0

3
1

.0
4

1
.0

9

G
2

N
o

n
e

FD
R

,
‘‘O

R
’’

ru
le

1
.1

3
1

.0
4

1
.0

8
1

.1
1

.0
1

1
0

.9
9

0
.9

9
1

.2
1

.1
5

1
.2

3
1

.0
2

1
.0

2
1

.0
7

G
2

N
o

n
e

N
o

n
e

1
.1

1
.0

3
1

.0
6

1
.0

8
1

1
0

.9
9

0
.9

9
1

.1
4

1
.0

9
1

.1
7

1
.0

1
1

.0
1

1
.0

5

G
2

1
g

e
n

e
‘‘A

N
D

’’
ru

le
1

.3
8

1
.3

1
.0

6
1

.3
7

1
.2

6
1

.2
4

1
.1

7
1

.1
1

1
.3

8
1

.3
8

1
.3

7
1

.3
1

.3
1

.2
8

G
2

1
g

e
n

e
‘‘O

R
’’

ru
le

1
.3

7
1

.3
1

.0
6

1
.3

6
1

.2
5

1
.2

3
1

.1
5

1
.1

1
1

.3
7

1
.3

6
1

.3
6

1
.2

9
1

.2
8

1
.2

7

G
2

2
g

e
n

e
s

‘‘A
N

D
’’

ru
le

1
.3

8
1

.3
1

.0
9

1
.3

7
1

.2
6

1
.3

6
1

.3
5

1
.2

9
1

.3
8

1
.3

8
1

.3
7

1
.3

8
1

.3
1

.3
2

G
2

2
g

e
n

e
s

‘‘O
R

’’
ru

le
1

.3
7

1
.3

1
.0

6
1

.3
6

1
.2

5
1

.3
5

1
.3

4
1

.2
8

1
.3

7
1

.3
6

1
.3

6
1

.3
7

1
.2

8
1

.3
1

G
2

3
g

e
n

e
s

‘‘A
N

D
’’

ru
le

1
.3

8
1

.3
4

1
.3

4
1

.3
7

1
.2

8
1

.3
6

1
.3

5
1

.3
5

1
.3

8
1

.3
8

1
.3

7
1

.3
8

1
.3

1
.3

5

G
2

3
g

e
n

e
s

‘‘O
R

’’
ru

le
1

.3
7

1
.3

1
1

.2
2

1
.3

6
1

.2
6

1
.3

5
1

.3
4

1
.3

3
1

.3
7

1
.3

6
1

.3
6

1
.3

7
1

.2
8

1
.3

3

D
a

ta
se

t
A

v
e

ra
g

e
1

.2
8

1
.2

4
1

.2
0

1
.2

8
1

.2
0

1
.2

2
1

.2
1

1
.1

9
1

.3
0

1
.2

9
1

.3
1

1
.2

4
1

.2
2

D
a

ta
ty

p
e

A
v

e
ra

g
e

1
.2

6
1

.2
3

1
.2

0
1

.2
7

C
e

lls
w

it
h

b
o

ld
fo

n
t

co
rr

e
sp

o
n

d
to

e
xp

e
ri

m
e

n
ts

w
it

h
st

at
is

ti
ca

lly
si

g
n

if
ic

an
t

re
co

n
st

ru
ct

io
n

o
f

re
g

u
la

to
ry

n
e

tw
o

rk
s.

Se
e

T
a

b
le

1
1

fo
r

ab
b

re
vi

at
io

n
s

o
f

ro
w

la
b

e
ls

.
Se

e
T

a
b

le
S

3
p

ar
t

B
fo

r
a

co
lo

re
d

ve
rs

io
n

o
f

th
is

ta
b

le
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

6
4

7
9

.t
0

0
8

De-Novo Learning of Genome-Scale Regulatory Networks in S. cerevisiae

PLOS ONE | www.plosone.org 14 September 2014 | Volume 9 | Issue 9 | e106479



Figure 7. Example scatter-plot of transcription factor connectivity versus the accuracy (combined PPV/NPV metric) of
reconstructing their sub-networks. The left panel shows the scatter-plot and the right panel shows the null distribution for establishing
statistical significance of the observed correlation.
doi:10.1371/journal.pone.0106479.g007

Table 9. Number of networks that have significant correlations between transcription factor connectivity and accuracy of
reconstructing their sub-networks.

Gold-Standard Network Inferred Network

Approach
Sensitivity/
Specificity PPV/NPV Sensitivity/PPV

Sensitivity/
Specificity PPV/NPV

Sensitivity/
PPV

BIVARIATE_Z_FDR_AND 1 1 1 8 1 10

BIVARIATE_Z_FDR_OR 1 0 1 9 1 11

BIVARIATE_Z_ALPHA 1 0 2 9 1 8

GLL_Z_1_AND 0 3 0 6 0 2

GLL_Z_1_OR 0 4 0 5 0 1

GLL_Z_2_AND 0 5 3 13 5 1

GLL_Z_2_OR 0 7 0 13 5 1

GLL_Z_3_AND 0 0 2 13 2 0

GLL_Z_3_OR 0 7 1 13 3 1

BIVARIATE_G_FDR_AND 0 0 1 5 3 11

BIVARIATE_G_FDR_OR 0 0 1 7 3 10

BIVARIATE_G_ALPHA 0 1 1 7 3 9

GLL_G_1_AND 0 1 0 4 5 10

GLL_G_1_OR 0 2 0 4 1 8

GLL_G_2_AND 0 2 0 6 6 8

GLL_G_2_OR 0 3 0 5 1 5

GLL_G_3_AND 0 2 0 7 5 8

GLL_G_3_OR 0 3 0 5 1 5

The correlations were assessed for 13 different networks (derived from 13 gene expression microarray datasets) for each combination of network reverse-engineering
approaches and combined accuracy metrics. Statistical significance is assessed at 5% alpha level adjusted globally for multiple comparisons (over all statistical tests
performed for the table). The left portion of the table corresponds to transcription factor connectivity assessed in the gold-standard network, and the right portion
corresponds to transcription factor connectivity assessed in the inferred network.
doi:10.1371/journal.pone.0106479.t009
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involved 1,000 permutations of gene identifiers for a fixed network

structure and establishing a null distribution for Spearman

correlation coefficients. The p-value was computed as proportion

of permuted networks where correlation was higher in magnitude

than the observed one. When we evaluated correlation between

connectivity and accuracy for multiple networks and accuracy

metrics, statistical significance was assessed at 5% alpha level

adjusted for multiple comparisons using the methodology of

[23,24].

Topological analysis and visualization of gene regulatory
networks

The topological analysis of gene regulatory networks was

performed in Cytoscape software platform [40] (http://www.

Table 10. Datasets used for gene regulatory network reverse-engineering.

Dataset type
Dataset
name

Sample
size

Number
of genes Description Source Reference

Observational
(Biological Wild-Type
Replicates)

Holstege1 200 6,170 A collection of wild-type
S. cerevisiae strain
transcriptional profiles

ArrayExpress [29]

E-TABM-773

Holstege2 200 6,170 A collection of wild-type
S. cerevisiae strain
transcriptional profiles

ArrayExpress [29]

E-TABM-984

Observational
(Environment/Time)

Gresham 100 5,590 Environmental change induced
transcription response in
S. cerevisiae

(to be submitted to GEO) [35]

Gasch 173 6,152 Environmental change induced
transcription response in
S. cerevisiae

http://genome-www.stanford.edu/yeast_stress/data.
shtml Accessed 8/20/2014

[55]

Smith 220 6,257 Environmental change induced
transcription response in
S. cerevisiae

GEO [56]

GSE9376

Yeung 582 5,717 Time-dependent response to
rapamycin in S. cerevisiae

ArrayExpress [57]

E-MTAB-412

Semi-Perturbation
(Compendium)

M3D 530 5,520 Compendium dataset for S.
cerevisiae

Many Microbe Microarrays Database (M3D) [58]

http://m3d.mssm.edu/ Accessed 8/20/2014

GPL90 1,470 6,740 Compendium dataset for S.
cerevisiae utilizing all samples
from GPL90 platform (Affymetrix
Yeast Genome S98 Array)

GEO Constructed
for this study

GPL90

Perturbation Hughes1 291 6,307 Transcriptional response in
S. cerevisiae induced by
promoter-shutoff strains

GEO [59]

GSE1404

Hughes2 291 6,307 Transcriptional response in S.
cerevisiae induced by transcription
factor overexpression and deletion

GEO [60]

GSE5499

Hu 269 6,429 Transcriptional responses in
S. cerevisiae induced by
transcription factor deletion

GEO [54]

GSE4654

Holstege3 464 6,170 Transcriptional response in
S. cerevisiae induced by protein
kinases and phosphatases deletion

ArrayExpress [61]

E-TABM-907

Holstege4 319 6,170 Transcriptional response in S.
cerevisiae induced by non-essential
knockouts of chromatin modifiers

ArrayExpress [62]

E-TABM-1074

doi:10.1371/journal.pone.0106479.t010
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cytoscape.org/) using NetAnalyzer plugin [41] (http://med.bioinf.

mpi-inf.mpg.de/netanalyzer/). Detailed definitions and meaning

of topological network parameters are given in [42]. Network

visualization was performed using yED graph editor [43] (http://

www.yworks.com/).

Discussion

Comparison with prior results
The results of the current study indicate that gene network

reverse-engineering in S. cerevisiae is a challenging problem.

Given prior work in the field, it is interesting to compare current

results with the prior studies in S. cerevisiae, while keeping in mind

that prior studies used less comprehensive gold-standard networks

(see Introduction and Table 1). Furthermore, the majority of

prior work deals only with inferring likelihood scores of all possible

network edges without establishing a threshold on these scores

which would result in a discrete network [18,21]. The latter studies

do not report accuracy metrics of gene network reverse-engineer-

ing but typically report metrics related to ranking all possible

network edges by the inferred likelihood scores. To the best of our

knowledge, there are only two studies which inferred discrete

genome-scale networks in S. cerevisiae. The study [20] applied two

statistical methods, resulting in non-statistically significant net-

works, both with PPV = 0. The study [19] used 6 versions of S.
cerevisiae binding data-based gold-standard and applied 30

approaches (many of which were not included in the current

study) to learn a network. As can be seen in Table S7, results of

the current study are much better in terms of sensitivity and

specificity and related combined metric. However, in terms of

PPV, NPV, and related combined metric, results are slightly worse

(by 0.01 PPV).

While this study focuses on genome-scale regulatory network

reverse-engineering in S. cerevisiae, there was significant prior

work in other model systems/organisms, e.g. E. coli [17–19,21].

Interestingly, inference of E. Coli networks seems to be an easier

problem than inference of S. cerevisiae networks. For example, the

best known result in terms of combined PPV/NPV metric for S.
cerevisiae is 0.92 (PPV = 0.08 and NPV = 0.98) but for E. Coli it is

0.36 (PPV = 0.64, NPV = 0.98) [19]. The results in terms of

combined sensitivity/specific metric for S. cerevisiae are also worse

than for E. Coli [19]. Others have also made similar observation

for additional metrics [18]. It remains to be seen whether the

difference in accuracy of learning S. cerevisiae and E. coli

networks is due to the nature of transcription factor regulation,

network complexity, quality of gold-standard networks, quality of

datasets used for network learning, or combination of these factors.

Towards improving accuracy of gene network reverse-
engineering

While there are theoretical challenges of network reverse-

engineering from microarray data, e.g. impact of cellular

aggregation on inference of statistical relations [44], we believe

that there are several ways to improve the accuracy of learning

gene regulatory networks. First, by further improving the quality

and completeness of gold-standard networks. For example, one

can improve networks obtained with current approaches by

ensuring that all transcription factors participate in both binding

and gene knockout data and by using a large number of biological

replicates for gene knockouts. The binding data can be further

improved by using ChIP-seq and inclusion of other indications of

bindings, for example protein binding microarrays. Another

possibility worth exploring is using protein-protein interaction

data in addition to binding data which would allow enriching the

Table 11. Statistical approaches used for gene regulatory network reverse-engineering.

Approach # Algorithm Statistic Conditioning Post-Processing Abbreviation

1 Bivariate analysis Fisher’s Z None FDR, AND rule BIVARIATE_Z_FDR_AND

2 Bivariate analysis Fisher’s Z None FDR, OR rule BIVARIATE_Z_FDR_OR

3 Bivariate analysis Fisher’s Z None Alpha BIVARIATE_Z_ALPHA

4 Multivariate causal graph-based (GLL) Fisher’s Z 1 AND rule GLL_Z_1_AND

5 Multivariate causal graph-based (GLL) Fisher’s Z 1 OR rule GLL_Z_1_OR

6 Multivariate causal graph-based (GLL) Fisher’s Z 2 AND rule GLL_Z_2_AND

7 Multivariate causal graph-based (GLL) Fisher’s Z 2 OR rule GLL_Z_2_OR

8 Multivariate causal graph-based (GLL) Fisher’s Z 3 AND rule GLL_Z_3_AND

9 Multivariate causal graph-based (GLL) Fisher’s Z 3 OR rule GLL_Z_3_OR

10 Bivariate analysis G2 None FDR, AND rule BIVARIATE_G_FDR_AND

11 Bivariate analysis G2 None FDR, OR rule BIVARIATE_G_FDR_OR

12 Bivariate analysis G2 None Alpha BIVARIATE_G_ALPHA

13 Multivariate causal graph-based (GLL) G2 1 AND rule GLL_G_1_AND

14 Multivariate causal graph-based (GLL) G2 1 OR rule GLL_G_1_OR

15 Multivariate causal graph-based (GLL) G2 2 AND rule GLL_G_2_AND

16 Multivariate causal graph-based (GLL) G2 2 OR rule GLL_G_2_OR

17 Multivariate causal graph-based (GLL) G2 3 AND rule GLL_G_3_AND

18 Multivariate causal graph-based (GLL) G2 3 OR rule GLL_G_3_OR

‘‘FDR’’ refers to thresholding associations at 5% FDR using the methodology of [23,24]. ‘‘Alpha’’ refers to thresholding associations at 5% alpha. ‘‘AND’’ rule implies that if
the algorithm run on X outputs Y and if the algorithm run on Y outputs X, then X and Y have an edge in the resulting network, and (ii) ‘‘OR’’ rule implies that if the
algorithm run on X outputs Y or if the algorithm run on Y outputs X, then X and Y have an edge in the resulting network.
doi:10.1371/journal.pone.0106479.t011
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gold-standard networks that are currently based only on

transcription factor-gene interactions. Second, by performing

inference of gene networks from both observational and pertur-

bation data with explicit knowledge of gene manipulations (current

methods were not provided with information about targeted

perturbations in the data). The latter methods (e.g., [45–49]) have

promise because they allow to solve the theoretical problem of

statistical indistinguishability of networks learned from observa-

tional data alone [6].

More on interpretation and analysis of obtained results
We used 4 widespread core performance metrics (sensitivity or

recall, specificity, PPV or precision, and NPV) and 3 ways to

combine them by equally weighting two antagonistic core

performance metrics at a time (sensitivity and specificity, PPV

and NPV, and recall and precision). Given that most methods

output sparse graphs and the underlying gold-standard networks

are also sparse, the combined sensitivity/specificity metric is

significantly influenced by sensitivity (because many networks have

specificity $0.90), and in particular combined PPV/NPV metric is

largely influenced by PPV (because all networks but one have

NPV$0.98). Combined recall/precision metric also suffers from

similar issue since it is mostly influenced by sensitivity (because

most methods have very low PPV#0.05). The interpretation of

results and relevance to specific biological problems can be

improved by using other combinations of core performance

metrics (e.g., by using unequal weighting of PPV and NPV metrics

in the Euclidean-based combined distance metric) or by devising

new performance metrics. To facilitate the latter task, we are

providing in Spreadsheet S5 detailed results with the numbers

of true positive, true negative, false positive, and false negative

edges computed for each network.

Conclusions

This study has two key contributions. First, we constructed high-

quality genome-scale gold-standards of direct regulatory interac-

tions in S. cerevisiae that incorporate binding and gene knockout

data. Second, we used 7 performance metrics to assess accuracy of

18 statistical association-based approaches for de-novo network

reverse-engineering in 13 different real datasets spanning over 4

data types (observational data consisting of biological wild-type

replicates, observational data obtained by changing time and/or

environmental conditions, compendium/semi-perturbation data,

and perturbation data). We found that inference of genome-scale

regulatory networks in S. cerevisiae is a challenging problem and

quantified resulting accuracies, most of which are statistically

significant (see Table S10). We also found significant variability of

the network reverse-engineering accuracy among statistical

approaches for network inference. When accuracy is assessed

based on sensitivity/specificity or recall/precision combined

metrics, bivariate analysis is the best approach, and when accuracy

is assessed based on PPV/NPV combined metric, Generalized

Local Learning (GLL) with conditioning on 2–3 genes is the best

approach. On the other hand, the variability of the network

reverse-engineering accuracy is much smaller among various

datasets and data types compared to variability among statistical

approaches. However, some datasets/data types tend to dominate

others for specific performance metrics, and in most cases using

observational data consisting of biological wild-type replicates

leads to worse accuracies compared with other datasets and data

types. This indicates that considering that cost efficiency of various

data types, observational data with changes in environments/time

is preferable for network reconstruction. Finally, we found that for

most reverse-engineering methods and accuracy metrics, connec-

tivity of transcription factors is often significantly correlated with the

reconstruction accuracy of their sub-networks. The correlations are

sometimes robust and significant in multiple networks inferred from

various datasets. Therefore, the connectivity measure may be used

to identify transcription factors whose sub-networks can be learned

accurately by de-novo reverse-engineering methods. We believe

that the gene network reverse-engineering community will find this

study useful in order to have a realistic perspective on this problem

and performance of a variety of approaches.
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