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Abstract

Exoplanet hunting efforts have revealed the prevalence of exotic worlds with diverse properties, including
Earth-sized bodies, which has fueled our endeavor to search for life beyond the Solar System. Accumulating
experiences in astrophysical, chemical, and climatological characterization of uninhabitable planets are
paving the way to characterization of potentially habitable planets. In this paper, we review our possibilities
and limitations in characterizing temperate terrestrial planets with future observational capabilities through
the 2030s and beyond, as a basis of a broad range of discussions on how to advance ‘‘astrobiology’’ with
exoplanets. We discuss the observability of not only the proposed biosignature candidates themselves but
also of more general planetary properties that provide circumstantial evidence, since the evaluation of any
biosignature candidate relies on its context. Characterization of temperate Earth-sized planets in the coming
years will focus on those around nearby late-type stars. The James Webb Space Telescope ( JWST) and later
30-meter-class ground-based telescopes will empower their chemical investigations. Spectroscopic studies of
potentially habitable planets around solar-type stars will likely require a designated spacecraft mission for
direct imaging, leveraging technologies that are already being developed and tested as part of the Wide Field
InfraRed Survey Telescope (WFIRST) mission. Successful initial characterization of a few nearby targets
will be an important touchstone toward a more detailed scrutiny and a larger survey that are envisioned
beyond 2030. The broad outlook this paper presents may help develop new observational techniques to detect
relevant features as well as frameworks to diagnose planets based on the observables. Key Words:
Exoplanets—Biosignatures—Characterization—Planetary atmospheres—Planetary surfaces. Astrobiology
18, 739–778.
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1. Introduction

In the endeavor to discover life beyond the Solar System,
the most critical step is to detect photometric, spectro-

scopic, and/or polarimetric properties of ‘‘potentially hab-
itable exoplanets’’ and search for features related to life.
The ways in which such observations can be utilized to detect
life at various confidence levels are described in the other
manuscripts in this issue (Catling et al., 2018; Meadows
et al., 2018; Schwieterman et al., 2018; Walker et al., 2018).
The idea of building a space-based direct-imaging observa-
tory specifically aimed at detecting signs of life on Earth-like
planets dates back to the 1990s (e.g., Burke, 1992; Elachi
et al., 1996), which elicited the Terrestrial Planet Finder
(TPF) mission studies by NASA (Beichman et al., 1999;
Lawson et al., 2007; Levine et al., 2009) and Darwin mission
concepts of ESA (Léger et al., 1996; Fridlund, 2000). The
Advanced Technology Large-Aperture Space Telescope
(ATLAST) concept represents a general-purpose observatory
capable of exoplanet direct-imaging with even larger aper-
tures (Postman et al., 2009) and was later updated as the High
Definition Space Telescope (HDST, AURA, http://www
.hdstvision.org). While the last Astrophysics Decadal Survey
of the United States did not prioritize any of these concepts
(https://www.nap.edu/catalog/12951/new-worlds-new-horizons-
in-astronomy-and-astrophysics), it did recommend exoplanet
technology development as its top medium-class investment.

Since these early mission studies, a huge expansion of
exoplanet science has taken place thanks to discoveries and
initial characterization made by radial velocity, transit, mi-
crolensing surveys, transit spectroscopy of close-in planets,
and direct imaging of uninhabitable self-luminous exoplanets.
These observations have revealed thousands of exoplanets,
allowing for analyses of demographic trends in the exoplanet
population. Of particular interest from an astrobiological
viewpoint is the occurrence rate of terrestrial planets in so-
called habitable zones (HZs), that is, the circumstellar region
in which liquid water could exist on the surface of a terrestrial
planet (Kasting et al., 1993). This rate is conventionally re-
presented by g�, and estimates were obtained employing
various criteria for the ‘‘terrestrial’’ size and for the range of
HZs (Catanzarite and Shao, 2011; Traub, 2012; Bonfils et al.,
2013; Dressing and Charbonneau, 2013, 2015; Gaidos, 2013;
Kopparapu, 2013; Petigura et al., 2013; Morton and Swift,
2014; Burke et al., 2015; Silburt et al., 2015; Zsom, 2015).
While the estimates span a range from a few percent up to the
order of unity reflecting the differences in the data sets and
the thresholds for the targets, it is now established that Earth-
sized planets in HZs are not rare. Meanwhile, the analyses
of the mass-radius relationship of close-in planets (period
shorter than *100 days), have revealed that most of the
planets with radii below 1:5� 2R� (R� is the Earth radius)
are consistent with rocky/metallic composition, while bigger
planets have large scatter in bulk density with a substantial
fraction of volatile-rich planets (e.g., Weiss and Marcy, 2014;
Rogers, 2015; Kaltenegger, 2017). Interestingly, a recent
analysis indicates a gap in population between the planets
smaller than ~1:5R� and those larger than ~2R� (Fulton
et al., 2017). A few probably terrestrial planets around HZs
have already been discovered in the solar neighborhood:
Proxima Centauri b, an Earth-mass planet receiving 65% of
the incident flux received by the Earth, only 1.3 pc away

(Anglada-Escudé et al., 2016); GJ 273 b, a planet a few times
as massive as Earth with an incident flux similar to that re-
ceived by Earth, 3.8 pc away (Astudillo-Defru et al., 2017b);
seven transiting Earth-sized planets around an ultra-cool star
TRAPPIST-1, three to four of which could conceivably be
habitable, 12 pc away (Gillon et al., 2017); and LHS 1140 b, a
large terrestrial planet 12 pc away (Dittmann et al., 2017).

In parallel, substantial technological and methodologi-
cal progress is being made through the characterization
of larger and/or hotter exoplanets. Recently proven obser-
vational techniques to characterize planetary atmospheres
include the usage of temporal variation to map the hetero-
geneity of planetary photospheric surfaces (e.g., Knutson
et al., 2007, 2012; de Wit et al., 2012; Majeau et al., 2012;
Demory et al., 2013, 2016) and the usage of the cross-
correlation analysis on high-resolution spectra to extract
Doppler-shifted lines due to the planetary atmosphere (e.g.,
Snellen et al., 2010; Birkby et al., 2013; Konopacky et al.,
2013). Lessons on data reduction processes and atmospheric
retrieval techniques are being learned (see Deming and
Seager, 2017, for a review). Numerical simulations are also
used to further develop the data analysis techniques of
spectroscopic data (e.g., Line et al., 2013; Line and Par-
mentier, 2016; Rocchetto et al., 2016; Deming and Sheppard,
2017) and photometric light curves (see Cowan and Fujii,
2017, for a review). The starlight suppression technologies
for high-contrast imaging have been advanced by the suc-
cessful ground-based direct-imaging observations using adap-
tive optics and coronagraphs (e.g., Kalas et al., 2008; Marois
et al., 2008; Lagrange et al., 2010; Kuzuhara et al., 2013;
Macintosh et al., 2015). Starshades have emerged as a viable
alternative approach to coronagraphs (Cash, 2006).

As these observations have progressed, theoretical work
has been exploring the properties and diversity of temper-
ate terrestrial planets, which could eventually be studied
through similar techniques. The list of potential bio-
signatures continues to grow and includes the spectral fea-
tures of atmospheric (volatile) molecules originated from
possible life (e.g., O2, O3, CH4, N2O, CH3Cl), the reflec-
tance spectra of biological surfaces (e.g., vegetation’s red
edge, reflectance spectra of pigments), and the temporal
variation of these signatures (see a review by Schwieterman
et al., 2018, and references therein). It has also been rec-
ognized that the proposed potential biosignatures contain the
risk of false positives (i.e., they can be produced nonbio-
logically under particular situations). Therefore, identifying
an inhabited planet with confidence also requires as much
contextual information as possible to evaluate the prospect
of a non-biological origin of detected biosignature candi-
dates and to find auxiliary evidence consistent with a bio-
logical origin (see Meadows et al., 2018, for a discussion on
how O2 would work as a biosignature, and see Catling et al.,
2018, for a framework to assess potential biosignatures).
The successful interpretation will require significant ad-
vances in our ability to model both inhabited and uninhab-
ited worlds (see discussions in Walker et al., 2018) as well
as the detailed observational data.

Founded on these ongoing observational, technological,
and theoretical developments, new space-based missions
and ground-based facilities will come into play in the near
future. The planned new telescopes most relevant to the
investigations of potentially habitable planets are listed in
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Table 1, together with their specifics and the expected usage.
In this paper, we overview the capabilities of these future
missions as well as the observational methods they will
employ, and discuss what kind of properties of potentially
habitable exoplanets could be observationally constrained.
We do not intend to prioritize future projects or observa-
tional techniques. Instead, our aim is to share the ongoing
efforts and limitations in exoplanet observations with a
broad range of readers involved in astrobiology, so that we
can be on the same page to think collaboratively about how
to make the most of future opportunities to deduce useful
information about planets.

In this paper, we use the term ‘‘potentially habitable
exoplanets’’ to imply two properties of such planets: (1)
terrestrial, i.e., inferred to have a well-defined surface and
no voluminous gaseous envelope, and (2) in the HZ of their
stars. For condition (1), we focus on small planets roughly
up to ~2R� in radius and up to ~10M� in mass where M� is
the Earth mass, referring to the recent observational evi-
dence of the radius/mass range of planets consistent with no
voluminous gaseous envelope (Kaltengger, 2017). As for
(2), to the first order the orbital distance of HZs scales
with the square root of the stellar luminosity, and rough
estimates tell that they are around 1 AU for solar twins
and around 0.01–0.3 AU for M-type stars (M?( 0:5M�,
L? ~ 10� 4 ~ 10� 1L� where M? and L? are stellar mass and
luminosity, respectively, and M� and L� denote the solar
values). Note that the exact location of the HZ of a given
star depends on many factors including the stellar spectrum,
planetary rotation, atmospheric properties, the initial amount
of water, and the evolutionary history of the surface envi-
ronment (e.g., Kasting et al., 1993; Abe et al., 2011; Pierre-
humbert and Gaidos, 2011; Kopparapu et al., 2013, 2014,
2016; Leconte et al., 2013; Wolf and Toon, 2014, 2015; Yang

et al., 2013; Zsom et al., 2013; Kadoya and Tajika, 2014;
Ramirez and Kaltenegger, 2014, 2016, 2017; Wolf, 2017).
Outside these HZs, planets may not necessarily be inhospi-
table, yet their habitable environments are more likely to
be confined to the subsurface (cf. the ‘‘internal’’ oceans of
Europa and Enceladus) and thus are probably more difficult
to observe across interstellar distances.

The organization of this chapter is as follows. In Section
2, we broadly describe the overall trend in exoplanet ob-
servations, which we expect to evolve from a focus on the
astrophysical characterization of exoplanets toward their
chemical, climatological, and astrobiological character-
ization. Then we move on to how individual potentially
habitable planets will be characterized from various aspects.
We discuss transiting planets (Section 3) and planets with
general orbital inclination (Section 4) separately, as the
former enable some unique methods for astrophysical and
chemical characterization and will be the prime targets in
the coming few years. In each of these two sections, we
review the methods for astronomical (mass, radius, orbit)
and chemical/climatological (atmosphere, surface, etc.)
characterizations, and the planned observational projects
that may make use of the methods. While we try our best to
reflect the state of the field at the time of writing, the spe-
cifics of the future missions are subject to change. Section 5
is devoted to how the contextual information, including host
star properties and planetary system properties, will be ob-
tained and how it will help in evaluating the planetary
conditions. In Section 6, we introduce the mission concepts
under development that envision commencing of operation
beyond 2030, and explore more ambitious possibilities
presented in the literature that could be planned further in the
future. Lastly, Section 7 concludes this paper by placing the
projects in a timeline and discussing the work to be done.

Table 1. Planned New Observatories Most Relevant

to Characterization of Potentially Habitable Planets

Expected
start

Space/
Ground Aperture

Purpose/Usage for potentially
habitable planets Instruments Wavelength

TESS 2018a space b Discover transiting planets
orbiting bright stars

photometry 0.6–1.0 mm

CHEOPS 2018 space 32 cm Provide precise radii of known
exoplanets, find transits
of RV planets

photometry 0.4–1.1 mm

JWST 2020 space 6.5 m Transmission/eclipse
spectroscopy, Phase curves

spectroscopy
(NIRISS, NIRSpec,
NIRCam, MIRI)

0.6–28.5mm

GMT 2023 ground 24.5 m Transmission spectroscopy, spectroscopy,
coronagraphy

0.3 mm-
ELT 2024 ground 39.3 m High-contrast imaging,
TMT 2027 ground 30 m High-contrast imaging with

high-resolution spectroscopy

PLATO 2026 space c Discover and characterize
transiting planets around bright
stars, including planets in HZs
of solar-type stars

photometry 0.5–1.05mm

WFIRST 2025 space 2.4 m High-contrast imaging (+ Discover
planets by microlensing)

coronagraphy,
low-resolution
spectroscopy

0.6–0.95mm (CGI)

aLaunched.
b4 cameras with 10.5 cm aperture each.
c26 cameras with 12 cm aperture each.
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2. From Astrophysical Characterization
to Astrobiological Characterization

In this section, we briefly summarize how the exoplanet
community as a whole plans to advance toward astro-
biological investigations of exoplanets with future missions.
This includes a description of discoveries our community
anticipates occurring in three broad eras of exoplanet ob-
servations: (1) astrophysical characterization, (2) chemical/
climatological characterization, and (3) astrobiological char-
acterization. Astrobiological characterization can be seen as
astrophysical, chemical, and climatological characterizations
particularly for potentially habitable planets. Figure 1 is a
schematic showing the relations among these regimes. The
arrows of various missions reach in to the ‘‘astrobiological
characterization’’ region to an extent reflecting approximately
the similarity of their targets to Earth; thus, the missions pri-
marily for potentially habitable planets around M-type stars
are slightly shortened. This section can serve as a preview of
the rest of the manuscript, in which we detail the methodolo-
gies and the specifics of the future projects to discuss how in-
dividual planets of astrobiological interest will be characterized.

2.1. The era of astrophysical characterization
of exoplanets

We are in the golden age of the era focused on the de-
tection and astrophysical characterization of exoplanets.
After the pioneering Convection, Rotation and planetary
Transits (CoRoT) mission demonstrated precision photom-
etry from space, the larger aperture and higher photometric
precision of the Kepler mission enabled thousands of planets
to be discovered, including numerous Earth-sized planets.
For many of these worlds, we have measured both size and
mass, knowledge of which allows for inferences on the bulk
composition of these planets. The large sample sizes have
also allowed for trends to be uncovered in exoplanet popu-
lations. The combination of the exoplanet demographics and
the simulations of bulk composition and density has led to the
inference that, at least for close-in planets, there are three

classes of planet size/mass: (1) planets with a rock-dominated
composition that have small masses and radii; (2) planets
with a gas-dominated composition that have large masses and
radii; and (3) planets with intermediate sizes that have a
composition which is dominated by neither rock nor gas.

The discoveries made during this era have also included
multiple surprises in the orbital and size properties of
planets. Hot Jupiters with large masses and short orbits were
thought to be improbable if not impossible yet were the first
planets discovered around main sequence stars (Mayor
and Queloz, 1995). Circumbinary planets were proposed
in science fiction lore yet were considered dubious by the
astrophysics community until discovered by the Kepler
mission (Doyle et al., 2011). The era of astrophysical
characterization began with biases toward planets larger
than Jupiter and orbits shorter than Mercury’s. Over time,
detection techniques have improved to allow detections of
planets with potentially habitable conditions. This began
with discoveries by the Kepler mission (Borucki et al.,
2011), has continued with ground-based surveys (e.g.,
Anglada-Escudé et al., 2012, 2016; Astudillo-Defru et al.,
2017b; Dittmann et al., 2017; Gillon et al., 2017), and will
continue further with ground-based measurements as well as
the upcoming Transiting Exoplanet Survey Satellite (TESS)
and PLAnetary Transits and Oscillations of stars (PLATO)
missions (Section 3.1.2). This ‘‘census’’ of astrophysical
properties of exoplanets will be complemented well by the
Gaia astrometric survey, which will be biased toward the de-
tection of planets with orbits that extend beyond the HZ, and
Wide Field InfraRed Survey Telescope (WFIRST) microlen-
sing surveys, which will be sensitive to the intermediate orbital
regions. The latter will provide greater completeness to our
survey of the abundance of potentially habitable worlds.

2.2. The era of chemical characterization
of exoplanets

Some of the recent exoplanet discoveries, and those antici-
pated from TESS and the CHaracterising ExOPlanet Satellite

FIG. 1. Schematic figure showing astrophysical, chemical, climatological, and astrobiological characterizations and the
possible contributions from the current and future missions (HCI = high-contrast imaging; HRS = high-resolution spectroscopy).
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(CHEOPS), will present the community with a pivot point
to the next era of exoplanet characterization, which will be
focused on chemical composition. Discoveries of nearby
transiting worlds will enable follow-up transmission spectros-
copy observations (Section 3.2). In principle, the method is
similar to the means by which transiting planets are discovered,
but higher sensitivities allow transit events to be measured at
multiple wavelengths. As the wavelength dependence of the
transit is a function of the atmosphere’s opacity and scatter-
ing properties, this method will identify the chemical compo-
sition of exoplanet atmospheres. Further information can be
obtained from spectroscopy of planetary eclipses, which ex-
tracts planetary dayside emissions (Section 3.3), and/or based
on the phase curves of exoplanets, which probe the heteroge-
neity of the atmosphere and enable us to map some features
(Section 4.2). While these kinds of chemical analyses have
been done with the Hubble Space Telescope (HST) (e.g.,
Charbonneau et al., 2002; Vidal-Madjar et al., 2003; Kreidberg
et al., 2014), Spitzer Space Telescope (e.g., Grillmair et al.,
2007; Richardson et al., 2007; Knutson et al., 2007), SOFIA
(e.g., Angerhausen et al., 2015), and ground-based observato-
ries (e.g., Redfield et al., 2008), they will accelerate when
the James Webb Space Telescope ( JWST) launches (Sec-
tion 3.2.3).

These observations by JWST should constitute the start of
the golden era for the chemical characterization of exopla-
nets, which will continue with multiple observatories and
techniques. JWST should have enough observation time for
direct imaging of dozens of young gas giants and should be
able to measure their chemical inventories. The next genera-
tion of ground-based instruments (Section 3.1.2) will also en-
able detailed transmission spectroscopy of transiting gaseous
planets and direct-imaging observations of young gaseous
planets in distant orbits. Ultimately, the 30 m class ground-
based telescopes (also referred to as ‘‘Extremely Large Tele-
scopes’’ or ELTs for short; Sections 3.2.3, 4.3.3, and 4.4.3) will
eventually carry out more sensitive transit spectroscopy and
direct imaging of many exoplanets, potentially down to sub-
Neptune-sized planets. Future space missions dedicated to
spectroscopy of exoplanets, the Fast Infrared Exoplanet
Spectroscopy Survey Explorer (FINESSE; Swain, 2012) and
Atmospheric Remote-sensing Infrared Exoplanet Large-
survey (ARIEL; Tinetti et al., 2016) plan to conduct a chemical
survey of 500 and 1000 transiting planets, respectively, in the
2020s. The wealth of data on the atmospheric composition
from these observatories will provide crucial insights into the
formation histories of planetary systems, putting our own solar
system into a broader context.

2.3. The era of astrobiological characterization
of exoplanets

Chemical characterization with JWST and the ELTs will
also initiate the era of astrobiological characterization through
a confirmation of habitable conditions and a search for signs of
life on potentially habitable exoplanets. JWST should be ca-
pable of characterizing the atmospheric composition of at least
one potentially Earth-like exoplanet (Stevenson et al., 2016),
while the updated instruments with existing ground-based
telescopes and future ELTs also plan to probe their atmo-
spheres with transmission spectroscopy (Section 3.2), high-
contrast imaging (Section 4.3), or high-contrast high-resolution

observations (Section 4.4). The observations with these facil-
ities will likely be limited to a few planets in orbit around M-
type stars. These stars are smaller than the Sun and have a
relatively larger transit depth for an Earth-sized planet and a
planet-to-star contrast ratio that is a few orders of magnitude
better than the contrast ratio of Earth-like planets to Sun-like
stars. The habitability of such worlds has been brought into
question based on complications stemming from the star’s
high-energy radiation (Ramirez and Kaltenegger, 2014; Luger
and Barnes, 2015; Airapetian et al., 2017) and from the climate
effects of synchronously rotating planets (Joshi et al., 1997;
Joshi, 2003; Wordsworth et al., 2011; Barnes et al., 2013).
Regardless of the outcome, however, this will be the first time
such observations are possible for temperate Earth-sized
planets around other stars.

The golden age in the era of astrobiological characterization
will likely require a space-based flagship mission that includes
biosignature detection as a major design driver of the mission’s
architecture. Historically, the study of such missions has fo-
cused on direct-imaging missions such as TPF-C, TPF-I, the
New Worlds Observer, THEIA, and Darwin. However, bio-
signatures could also be detected via transit transmission/
emission spectroscopy, if the observatory has sufficiently low
noise characteristics. Currently, NASA is studying three flag-
ship mission concepts in advance of the next US Decadal
Survey, which all include a search for biosignatures in their
design drivers: Habitable Exoplanet Imaging Mission
(HabEx), Large UltraViolet Optical and InfraRed surveyor
(LUVOIR), and Origins Space Telescope (OST) (Section 6.1).
OST is a general mid-IR observatory and is being designed
with transit spectroscopy of potentially habitable worlds in
mind; it will be more sensitive than JWST and should extend
observations to longer wavelengths and larger numbers of
planets than what JWST can access. LUVOIR does not have
transit spectroscopy as a central driver, but its large collecting
area (>8 m mirror) should increase sensitivity and do so at a
wavelength range complementary to (shorter than) JWST’s.
However, the primary targets of these transit spectroscopy
observations would still be planets orbiting M-type stars. Both
HabEx and LUVOIR aim to characterize terrestrial planets in
the HZs around a variety of nearby stars, with most targets
being F-, G-, or K-type stars, via direct-imaging spectroscopy,
and to conduct a range of general astrophysics observations
that would place the exoplanet spectra in the context of the host
star, comparative planetology, and cosmological history; they
differ in their levels of quantitative ambition. These direct
imaging observations would probe deeper into exoplanet at-
mospheres, at some wavelengths down to the surface. Thus, the
missions designed with this technique in mind would be able to
assess exoplanetary properties that will be difficult or im-
possible to otherwise observe. These three missions are dis-
cussed in more detail in Section 6.1.

The way individual planets of astrobiological interest are
characterized will not necessarily proceed monotonically
from astrophysical to chemical and climatological charac-
terization. The possibilities to measure specific planetary
properties depend on many factors, including whether the
planets are transiting or not. Thus, we discuss prospects for
transiting planets and planets with general orbital inclination
separately in the following two sections. These prospects for
future observations also depend on the spectral type of the
host star. Therefore, we consider solar-type (F-, G-, K-type)
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stars and late-type (M-type) stars as two representative
classes to give a rough idea. We summarize the prospects
for each class (transiting or nontransiting planets around
solar-type or late-type stars) in Table 2. Note that in reality
the spectral type of the star is continuous, and the scope of
each observational method does not necessarily follow this
classification strictly. Figure 2 summarizes some spectral

signatures of interest, which will be discussed later in the
paper.

3. Characterizing Transiting Planets

In this section, we focus on the methods to characterize
potentially habitable planets that are applicable to transiting

FIG. 2. Examples of atmospheric and surface spectral features of temperate terrestrial planets. Upper panel: Atmospheric signa-
tures, which can in principle be probed through both transmission spectra and emergent spectra. The continuous features of molecules at
shorter wavelengths are absorption cross section at approximately 300 K, taken from MPI-Mainz UV/VIS Spectral Atlas of Gaseous
Molecules of Atmospheric Interest (Keller-Rudek et al., 2013), shown in log scale from 10-26 to 10-16 cm2/molecule. Original data
sources are Yoshino et al. (1988) for O2; Brion et al. (1998) for O3; Selwyn et al. (1977) for N2O; Cheng et al. (2006) for NH3; Mérienne
et al. (1997), Coquart et al. (1995), and Vandaele et al. (1998) for NO2. The lines at longer wavelengths are line intensities at 296 K and
1 atm in log scale from 10-26 to 10-16 cm2 cm-1/molecule taken from the HITRAN2012 database (Rothman et al., 2013). Lower panel:
thermal radiation and reflectance spectra of surface materials, which can be probed in emergent light. The reflectance is shown in linear
scale from 0 to 1. All data but biological pigments are taken from the ECOSTRESS Spectral Library (Baldridge et al., 2009; Meerdink
et al., unpublished data). The data of biological pigments are from VPL spectral databases (Schwieterman et al., 2015).
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ones. Measurements of radius, mass, and the orbital ele-
ments are referred to as astrophysical characterization and
discussed in Section 3.1. Chemical, climatological character-
ization through transmission spectroscopy and eclipse spec-
troscopy are discussed in Sections 3.2 and 3.3, respectively.
In each of these subsections, we review the method, sensi-
tivity consideration, and the planetary properties that, in
principle, can (or cannot) be studied using the method,
followed by the prospects with the future observational
facilities to be available by 2030.

3.1. Astrophysical characterization

3.1.1. Method and sensitivity. Radius. The radius of a
transiting planet is measured primarily from the transit
depth. (Strictly speaking, the transit depth tells us the
planetary radius relative to the star, thus the stellar radius
needs to be well constrained in order to obtain accurate
information on the planet’s radius.)

Mass. Masses of transiting planets have been measured
through two methods: the radial velocity (RV) method and the
transit timing variation (TTV) method. The RV method,
which detects the reflex motion of the star due to the planetary
orbital motion through the Doppler shift of the high-resolution
stellar spectra, measures the product of the planetary mass and
sine of the orbital inclination angle (i), but because the incli-
nation of transiting planets can be determined (i ~ 90�), the
true mass is obtained. A difficulty with potentially hab-
itable planets is that the variation of stellar RV they
produce is generally much smaller than most of the suc-
cessful RV observations to date. The amplitude of stellar
RV variation due to a planet, K, is approximately

K ~ 9 cm=s
Mp sin i

M�

� �
a

1 AU

� �� 1=2 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p
� �

M?

M�

� �� 1=2

[1]

where M? and Mp are the stellar and the planetary masses,
M� and M� are the solar and Earth’s masses, a is the
semimajor axis, and e is the eccentricity. The RV variation of
G-type stars orbited by an Earth twin, of the order of 10 cm/s,
is challenged by the ‘‘jitter’’ of the stellar RV originating
from magnetic activity, convection, and so on (e.g., Saar
et al., 1998, Queloz et al., 2001; Dumusque et al., 2011a,
2011b; Boisse et al., 2012), as well as instrumental noise (see
Fischer et al., 2016, for a recent overview of the field).
However, the RV amplitude of a late-type star orbited by a
HZ Earth-sized planet is larger due to the small stellar mass
(M?(0:5M�) and the small orbital distance of the HZs
(a(0:3 AU). Such planets have already been discovered
through the RV method (Anglada-Escudé et al., 2012, 2016),
and the ongoing development of high-resolution spectro-
scopic instruments will further enforce the discoveries of
similar targets (Section 3.1.2). Near-future transit survey
by TESS will focus on those around nearby late-type stars,
providing a synergy with RV observations. While temperate
Earth-sized planets around solar-type stars typically suffer
from the observational noise, those around bright and quiet
stars and/or those on the larger end may become observable.
In addition, RV observations will be facilitated once the
planetary signal is detected by other means (e.g., transit sig-

nals obtained with PLATO; Section 3.1.2) because the priors
for the orbital period and ephemeris will ensure the efficient
use of telescopes as well as make the data reduction easier.

If the target planet is in a multiplanet system and the
planetary companion (or companions) is (are) observed to
transit, planetary mass can also be constrained from the
TTVs as a result of a mass-dependent dynamical perturba-
tion of the planet (Agol et al., 2005; Holman and Murray,
2005). This method is based on photometric data with high
time resolution and is useful when the host star’s RV
modulation is difficult to observe. Indeed, the masses of
some of the recently discovered Earth-sized planets have
been constrained through this method (e.g., Lissauer et al.,
2011; Gillon et al., 2017). TTV may be used to constrain the
masses of temperate Earth-sized transiting planets around
solar-type stars as targeted by PLATO where RV methods
could be confounded.

Interior composition. Once both radius and mass are
measured, internal structure may be constrained. The mass-
radius relationship allows us to distinguish rocky/metallic
terrestrial planets with thin atmospheres from planets with
thick atmospheric envelopes, and perhaps water-rich ones
(e.g., Léger et al., 2004), although the intermediate densities
are confronted by degeneracies (e.g., Fortney et al., 2007;
Seager et al., 2007; Rogers and Seager, 2010). Combined
with stellar composition, inferences on the compositions of
rocky material could also be made (Dorn et al., 2017a, 2017b).

Orbital elements. The orbital parameters most relevant
to the habitability discussion are semimajor axis and ec-
centricity, which determine the incident flux and its time
variation. The semimajor axis is constrained from the peri-
odicity of transit light curves provided that the stellar mass
is known, while eccentricity can constrained from RV ob-
servations, TTV, and/or occasionally the requirement for
stability of the system for multiplanetary systems (e.g., Barnes
and Quinn, 2001). (The close-in planets are, however, often
assumed to be in a circular orbit due to tidal effects.)

Knowing the orbital ephemerides to high precision is es-
sential for the efficient use of telescopes for follow-up obser-
vations of known exoplanetary systems as well as for the
search of transit signals of RV-detected planets. It has been
shown that uncertainties in the eccentricity and argument of
periastron can lead to large errors in transit time calculations
(Kane and von Braun, 2008; Kane et al., 2009). The major
issue arises from the uncertainties in the orbital period and time
of periastron passage, as well as the time elapsed since the
most recent data was acquired, because these cause a drift in
phase. In most cases, only a handful of additional RV mea-
surements is needed to provide a dramatic improvement in
orbital period and re-sync the location of the planet in its orbit,
provided the observations are acquired with the same telescope
and instrumentation to remove the need for a data offset.

3.1.2. Opportunities through 2030. From space, the re-
purposed Kepler spacecraft, renamed K2, is currently under
operation and observing 14 fields near the ecliptic plane in
turn to find more transiting planets. K2 is planned to con-
tinue its observations until 2018. There are also ground-
based surveys of transiting planets specifically targeting
Earth-sized planets around late-type stars, including MEarth
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(Charbonneau et al., 2009; Berta-Thompson et al., 2015)
and TRAPPIST (Gillon et al., 2016, 2017).

The primary contributor to the mass measurements of
transiting planets is RV observations with ground-based
telescopes. In the coming years, a new set of stable high-
resolution spectrographs in the visible and near-IR will be
commissioned at 10 m class telescopes and smaller. The
Infrared Doppler instrument (IRD: Y, J, and H bands) for
the Subaru Telescope, which adopts laser frequency combs
as wavelength calibration to enable extremely high RV
precisions, will start operating in 2018 and will be the first
ultra-stable spectrograph in the near-IR range (Tamura
et al., 2012). A precursor, the CARMENES spectrograph
(optical, Y, J, and H bands), started operating at the Calar
Alto 3.5 m telescope in 2016 (Quirrenbach et al., 2016).
Two other near-IR laser-frequency comb-based spectro-
graphs, the Habitable Planet Finder (HPF: Y and J bands)
for the 9.2 m Hobby-Eberly Telescope (Mahadevan et al.,
2012) and SPIRou (Y, J, H, and K bands) for the 3.6 m
Canada-France-Hawaii Telescope (Delfosse et al., 2013),
will be ready for use in 2017. Beyond 2018, high-precision
spectrographs for planet surveys will be commissioned:
CRIRES plus for the Very Large Telescope (VLT; Follert
et al., 2014; Dorn et al., 2016), iLocater for the Large Bi-
nocular Telescope (LBT; Crepp et al., 2016), Near InfraRed
Planet Searcher (NIRPS) as a near-IR version of the High
Accuracy Radial velocity Planet Searcher (HARPS) for the
3.6 m telescope at La Silla Observatory, and the Echelle
SPectrograph for Rocky Exoplanet and Stable Spectroscopic
Observations (ESPRESSO) with VLT, which is the first
spectrograph designed with the goal of reaching 20 cm/s for
its overall RV precision (Pepe et al., 2014). Eventually, the
measurements made by such instruments will be limited by
noise imparted by our own atmosphere. If this proves a limiting
factor in the detection of Earth-sized planets around Sun-sized
stars, then such detections will have to be made from space.

In 2018, TESS and CHEOPS will be launched to discover
nearby transiting planets, with the primary targets being
short (<30 day) orbit planets, including HZ planets around
late-type stars.

The Transiting Exoplanet Survey Satellite (TESS)
(Ricker et al., 2014) is an all-sky, 2-year Explorer-class
planet-finder mission launched in 2018, designed to identify
planets ranging from Earth-sized planets to gas giants,
covering a wide range of stellar types and orbital distances.
The main goal of the TESS mission is to detect (small)
planets around bright host stars that will be good targets
for atmospheric characterization with, for example, JWST.
TESS will tile the sky with 26 observation sectors, spending
at least 27 days staring at each 24� · 96� sector and ob-
serving 200,000 stars, as defined in the TESS Input Catalog
(TIC). The sectors will overlap at the ecliptic poles, cov-
ering the JWST continuous viewing zone (CVZ), in order to
search for smaller- and longer-period planets. It was shown
that TESS will find approximately 1700 transiting planets
from its 200,000 preselected target stars—based on simu-
lations of the nearby population of stars, occurrence rates of
planets from the Kepler mission, models of photometric
performance, and sky coverage of the TESS cameras (Sul-
livan et al., 2015). Sullivan et al. (2015) also predicted that
TESS will detect approximately 48 planets with Rp<2R�
and 0:2<Sp=S�<2 (Rp and Sp are the radius and the in-

cident flux of the planet, respectively, and R� and S� de-
note Earth’s values) around late-type stars with effective
temperature lower than 4000 K. Between 2 and 7 of these
planets will have host stars brighter than K-band magni-
tude of 9 and will be very interesting targets for JWST to
follow up by spectrophotometrically characterizing their
atmospheres and searching for the first signs of habitability
(Sections 3.2 and 3.3).

The CHaracterising ExOPlanet Satellite (CHEOPS)
mission (European Space Agency CEOPS Definition Study
Report (2013); Beck et al., 2016) is the first ESA Small (S-
class) mission to perform ultrahigh precision photometry of
exoplanetary systems. Its main objective will be to search for
transits around bright stars known to harbor planets detected
via RV measurements. It will aim to determine both whether
the known planets transit or not and the transit detection of
additional close-in planets not detected by RV. This search will
focus on shallow transits on bright stars (6 < V < 9 mag, where
V is the V-band magnitude) in the mass range smaller than
Neptune with orbital periods of up to*50 days. When a transit
is found, it provides the unique capability of determining radii
and therefore densities with *10% accuracy for these targets.
Using the density provided by CHEOPS, one can infer the
atmospheric volume in a wide parameter space of environ-
mental conditions. CHEOPS will also provide improved radii
for already known planets and planets that will be discovered
by the future space-based or ground-based transit surveys. This
sample of well-characterized small transiting exoplanets
around bright host stars will be a group of targets very well
suited for upcoming space-based and ground-based plat-
forms, which focus on spectroscopic characterization of
exoplanetary atmospheres.

In the 2020s, transiting planets in a broader parameter
space will be surveyed by PLAnetary Transits and Os-
cillations of stars (PLATO) (Rauer et al., 2014). PLATO
has been selected for the M3 launch opportunity (currently
planned for 2026) in ESA’s Cosmic Vision 2015–2025
program. PLATO’s main science goal is to photometrically
detect planetary transits and to characterize exoplanets and
their host stars, including terrestrial planets in the HZs
of solar-type stars, by monitoring up to one million stars
covering up to 50% of the sky. Extensive end-to-end sim-
ulations have shown that PLATO will be able to detect Solar
System analogues: the discovery of Venus and Earth ana-
logues transiting G-type stars like our Sun is feasible
(Hippke and Angerhausen, 2015; PLATO Definition Study
Report (2017)). Characterization includes the following
goals for the uncertainties: 3% for planetary radii, 10% for
planetary masses (through RV measurements and TTVs),
and 10% for planetary system ages (via asteroseismology of
host stars), for planets orbiting bright stars. The resulting
large sample of accurately characterized terrestrial planets at
orbital periods beyond 3 months will be a unique contri-
bution of PLATO to exoplanet research and allow for
comparative exo-planetology up to 1 AU orbital distance.
Planets orbiting the brightest stars will be key targets for
transit spectroscopy of their atmospheres with telescopes
such as JWST or the ELTs. Radius measurements of indi-
vidual planets as well as the statistical mass-radius rela-
tionship of terrestrial planets at a larger orbital separation
found by PLATO also serve as a basis in characterizing such
targets with future direct-imaging missions, where the

748 FUJII ET AL.



planetary size is difficult to measure directly. In addition to
these exoplanet studies, the large data set of stellar light
curves obtained by PLATO will allow us to study the stellar
structure, evolution, and activity through asteroseismology
and rotational modulations, which provide additional sci-
ence returns into stellar, galactic, and extragalactic research.

3.2. Chemical/Climatological characterization:
Transmission spectroscopy

3.2.1. Method and sensitivity. Transmission spectro-
scopy is a technique to detect the difference between out-of-
transit and in-transit spectra, which can reveal the absorption
and scattering properties of planetary atmospheres (Seager and
Sasselov, 2000). Figure 3 is the transmission spectrum of Earth
observed using lunar eclipse (Pallé et al., 2009), exhibiting the
major absorption features of H2O, O2, O3, CO2, and CH4,
imposed on a slope due to Rayleigh scattering.

The strength of the spectral features relative to the total
stellar flux is estimated by

S~
2NHHRp

R2
?

~84 ppm
NH

4

� �
H

8 km

� �
Rp

R�

� �
R?

0:1R�

� �� 2

[2]

where

H¼ RT

latmg
~ 7:6 km

T

250 K

� �
Rp

R�

� �2
Mp

M�

� �� 1 latm

28 g=mol

� �� 1

[3]

while R? and Rp are the stellar and planetary radii, respec-
tively, R is the gas constant, T is atmospheric temperature,
latm is the mean molecular mass of the atmosphere, and g is
the surface gravity of the planet. Here, the depth of spectral
features is represented by NHH, where H is the scale height of
the atmosphere and NH is a factor, which is typically 1–5 for
spectral features in the optical to far-IR range with spectral
resolution R = 100–1000, depending on the atmospheric
composition (e.g., Kaltenegger and Traub, 2009). In Eq. 2, we
normalized the signal for an Earth-sized planet with an Earth-
like N2-dominated atmosphere around a late M-type star with
R?~0:1 R�, similar to TRAPPIST-1 (an M8 star; Gillon
et al., 2016). If the host star has the solar radius and other
things are equal, the signal would be less than 1 ppm, too

small to be detectable in the near future as described below.
However, planetary parameters including atmospheric mean
molecular mass and the surface gravity vary signal levels.

The detectability of the features depends on the obser-
vational strategies, instruments used, and the analysis pro-
cesses. In an idealized case where one tries to identify a
spectral feature in a continuum whose only noise source is
the photon noise, the signal-to-noise ratio (SNR) is deter-
mined by the stellar photon counts N? and the signal level S:

SNR~
N?Sffiffiffiffiffiffiffiffi
2N?

p ~
Sffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR2
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_n k;Tð Þ¼ B k;Tð Þ
hc=kð Þ ¼

2c

k4

1

exp
hc

kkBT

� �
� 1

[5]

where l is the wavelength, T? is the stellar effective temper-
ature, B k;T?ð Þ is the blackbody radiance as an approximation
for the stellar spectrum, _n k;T?ð Þ represents the corresponding
photon count, d is the distance from the star, D is the aperture
of the telescope, Dk is the wavelength resolution, Dt is the
integration time through the transits, and n is the total
throughput. The factor

ffiffiffi
2
p

comes from the assumption that the
in-transit spectrum is calibrated by out-of-transit spectrum with
equal integration time; thus, the observation would require
*2Dt in total. Again, we adopted stellar parameters similar to
TRAPPIST-1, and consider JWST as an example telescope
assuming D¼ 6:5 m and n¼ 0:4 (Cowan et al., 2015). Even
when considering this idealized situation with planets around
late M-type stars, it is likely necessary to accumulate tens to
hundreds of hours in total integration time, or tens of transits,
in order to detect atmospheric signatures. Such observations
can be demanding, and it is therefore critical to have a handful
of golden targets that orbit bright host stars and are hence best
suited for follow-up observations.

FIG. 3. Transmission spectra of Earth observed at the lunar eclipse, taken from Pallé et al. (2009). The spectral resolution
is R * 960 in the optical and R * 920 in the near-IR.

OBSERVATIONAL PROSPECTS FOR BIOSIGNATURES 749

https://www.liebertpub.com/action/showImage?doi=10.1089/ast.2017.1733&iName=master.img-002.jpg&w=366&h=139


In reality, there exists additional systematic noise that can
be instrumental and/or astrophysical (Barstow et al., 2016;
Greene et al., 2016). Currently, HST and Spitzer observations
leave tens of ppm as a noise floor that is not reduced after co-
adding the data. Given that the expected signal level of at-
mospheric features can be of the order of 10 ppm or less, the
detection of these features may be critically challenged by such
noise. Signatures of Earth twins around solar-type stars are
therefore much less likely to be detected.

While we have assumed low-resolution spectroscopy
or multiband photometry above, the past few years have
seen fast development in the technique to use high-resolution
spectroscopy for characterization of exoplanetary atmospheres.
When the resolution is sufficiently high (RT100, 000, where R
is the spectral resolution), numerous lines are resolved, and the
cross-correlation analysis with the modeled template spectra
can be performed (see Fig. 4 for the example of 1.27mm O2

features with varying spectral resolutions). The high-resolution
transmission spectroscopy has been successfully performed for
the Jupiter-sized close-in planet HD 209458b by Snellen et al.
(2010) using CO features. This technique could be applied to
characterizing the atmospheres of Earth-sized planets (Snellen
et al., 2013; Rodler and López-Morales, 2014). Such high-
resolution transmission spectroscopy will be a specialty of
ground-based telescopes in the coming decade because none of
the planned space-based missions can perform high-resolution
spectroscopy. Future 30 m class telescopes will offer powerful
facilities suitable for this kind of observation (Section 3.2.3).

3.2.2. What can be studied?

Gases. Transmission spectra are sensitive to the constit-
uents of the upper atmospheres (i.e., at low pressures). The
SNR favors the wavelengths where the stellar flux peaks but
may be observable out to the mid-IR range from space,
depending on the instrumental sensitivity, the brightness of
the star, and the spectral resolution needed. Major molecular
features of Earth’s atmosphere in this wavelength range
include those from CO2 (2.7, 4.3, 15mm), H2O (0.94, 1.13,
1.4, 1.9, 2.7, 6 mm), O2 (0.69, 0.76, 1.27 mm), and O3 (0.5–

0.7, 3.3, 4.7, 9.6 mm) (e.g., Kaltenegger and Traub, 2009;
Bétrémieux and Kaltenegger, 2014; Misra et al., 2014b),
while Rayleigh scattering produces the characteristic slope
at the short wavelengths. Absorption bands of other mole-
cules, which could potentially be important for other worlds,
include CH4 (2.3, 3.3, 7.7 mm), CO (2.35, 4.6 mm), SO2 (4.0,
7.3, 8.6, 18mm), N2O (2.9, 3.9, 4.5, 7.7, 17 mm), NH3 (1.5, 2,
2.3, 3, 6.1, 10 mm), O2-O2 dimer features (1.06, 1.27 mm)
CH3Cl (3.4, 7, 10, 14mm), and DMS (3.4, 6.9, 7.6, 9.7,
14.5 mm); see the upper panel of Figure 2 and Catling et al.
(2018) for a more comprehensive list. Also, many organic
species have absorption bands in the mid-IR, which would
help a search for a broader list of potential biogenic mole-
cules (Seager et al., 2016).

The diversity of the atmospheric properties of Earth-sized
planets is probably large, and the signal levels will likely
vary. In particular, as indicated by Eqs. 2 and 3, planets with
hydrogen-rich atmospheres (latm~2) should have increased
scale heights and hence have amplified signals overall (see,
e.g., Miller-Ricci et al., 2009; Pierrehumbert and Gaidos,
2011; Seager et al., 2013; Ramirez and Kaltenegger, 2017).
Likewise, surface gravity of the planet affects the overall
signal strength through the scale height. Geological activi-
ties modify the abundance of the molecules involved in the
cycling, such as CO2 and SO2 (Kaltenegger and Sasselov,
2010; Kaltenegger et al., 2010, 2013). Interaction with in-
coming radiation also matters; for example, in an Earth-like
atmosphere, CH4 would accumulate more easily under the
UV irradiation of an M-type star than a G-type star, improving
the expected signal level of CH4 bands (e.g., Segura et al.,
2005; Rauer et al., 2011; Hedelt et al., 2013; Rugheimer et al.,
2013, 2015). The mixing ratio of H2O also depends on pho-
tochemistry (Rauer et al., 2011; Rugheimer et al., 2013, 2015)
as well as the effects of three-dimensional atmospheric
structures (Fujii et al., 2017a; Kopparapu et al., 2017).

In the inverse problem for determining quantitative esti-
mates of molecular abundances, major molecular absorption
depths in transmission spectroscopy constrain the relative
abundance of the spectrally active molecules, while the mixing
ratios of these species and the spectrally inactive compo-
nents require the Rayleigh slope unless the higher-order
spectral features of absorption bands are measured (Benneke
and Seager, 2012; Heng and Kitzmann, 2017).

Transmission spectroscopy in the UV potentially provides
a valuable opportunity to probe the extended exospheres of
terrestrial planets. When the planetary atomic exosphere is
extended, it can absorb a substantial fraction of the stellar
emission lines of the same atom during the planetary transit.
Indeed, the absorption signatures in the stellar Lyman-alpha
emission line (1215.67Å) due to the extended atomic hy-
drogen tail of the planetary exosphere have been detected
for the warm Neptune-mass exoplanet GJ 436b (Ehrenreich
et al., 2015; Bourrier et al., 2016), and it may not be a huge
leap to observe smaller, cooler planets once good targets are
found. A planet with an ocean that evolves to have a sig-
nificantly moist upper atmosphere due to, for example, the
increased intensity of the host star, would lead to efficient
hydrogen escape to space, potentially resulting in the similar
features ( Jura, 2004). In addition, UV transmission spectro-
scopy may also be used to study of atmospheric molecules,
including biosignature candidates such as O2, O3, H2O,
N2O, CH4, whose cross sections are significantly larger in
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mosphere with varying spectral resolution.
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UV than in the visible/near-IR range (Bétrémieux and Kalte-
negger, 2013). Such an advantage in the atmospheric mo-
lecular signatures, however, is at least partially offset by the
generally lower stellar flux available in the UV than in the
visible and near-IR range.

Clouds/haze. Cloud/haze layers may be inferred from a
broad slope in transmission spectra (e.g., Robinson et al.,
2014b) or from muted spectral features (e.g., Kreidberg
et al., 2014). Because of the tangential optical paths of
transit geometry, even tenuous clouds/haze can contribute to
a considerable optical depth, and, if present at low pressure,
the molecular features can be significantly weakened. While
they can be inconvenient obstacles to detections of molec-
ular features, these may also be seen as a signal that could
provide insights into the atmospheric compositions (e.g., Hu
et al., 2013; Checlair et al., 2016) and have even been
proposed as potential biosignatures in certain atmospheric
contexts (Arney et al., 2016). At longer wavelengths,
transmission spectra are less sensitive to high-altitude haze
particles due to the reduced extinction efficiency (e.g., Hu
et al., 2013; Arney et al., 2016).

Vertical structure. When the stellar light is transmitted
through the planetary atmosphere, it is refracted as a result
of the atmospheric density gradient. The refraction has no-
table effects on transmission spectroscopy (Garcı́a Muñoz
and Pallé, 2011; Garcı́a Muñoz and Mills, 2012; Garcı́a
Muñoz et al., 2012). Due to refraction, the altitude at which
the transmitted (and refracted) ray probes the atmosphere
changes over time, and there is a lower limit in altitude (an
upper limit in pressure) to which the transmission spectra
are sensitive (Garcı́a Muñoz and Mills, 2012; Garcı̂a Muñoz
et al., 2012, Bétrémieux and Kaltenegger, 2014). Thus,
time-resolved transit spectroscopy, while extremely chal-
lenging, would in principle probe atmospheric properties at
different altitudes (Misra et al., 2014b). In particular,
slightly before or after transit, some fraction of the stellar
light refracted through the relatively lower part of the
planetary atmosphere reaches the observer if the atmosphere
is optically thin, producing an increase in the stellar flux.
Such an increase may be used to identify an optically thin
atmosphere down to the low altitudes, which is favorable for
follow-up observations to detect atmospheric molecules of
terrestrial planets (Misra et al., 2014b).

Surface pressure, temperature. Transmission spectra
could probe the surface pressure if the atmosphere is so thin
that atmospheric refraction does not limit our ability to probe the
surface layers and radiatively transparent along the slant path at
some wavelengths. However, both factors are likely to prevent us
from probing the lower atmosphere of Earth-like atmospheres
(Garcı́a Muñoz et al., 2012; Bétrémieux and Kaltenegger,
2014; Misra et al., 2014b); thus, the surface pressure is likely
to remain unconstrained. The surface temperature would
also likely remain unconstrained, while temperature in the
upper atmosphere affects the scale height (Eq. 3).

3.2.3. Opportunities through 2030. So far, HST has been
the most powerful observatory for transmission spectroscopy.
HST will likely remain the only one capable of observing
transmission spectroscopy in the UV in the coming years.

A new space UV observatory from Russia, WSO-UV
project, is planned with a 1.7 m telescope (Sachkov et al.,
2014), which can provide deep transit observation capability
in the UV.

Transmission spectroscopy in the visible and near-IR has
also been performed with ground-based telescopes with vary-
ing spectral resolutions. The new stable visible and near-IR
high-resolution spectrographs with the 10 m class telescopes
(Section 3.1.2) will be a powerful tool to characterize planetary
atmospheres using high-resolution transmission spectroscopy,
allowing the search for molecular signatures of hot Jupiters and
potentially down to Neptune-sized planets.

In 2020, a new space observatory, the James Webb Space
Telescope (JWST), will be launched. JWST is NASA’s
multipurpose space observatory with a 6.5 m mirror. One of
its main capabilities will be its ability to study the atmo-
spheres of exoplanets with observations in transit, eclipse, or
throughout their orbits as a continuous time series to create
phase curves. Its halo orbit around the Earth-Sun L2 point
allows for long, highly stable, uninterrupted observing
sequences compared with ground-based observatories or
HST. JWST has four instruments: the Near-Infrared Camera
(NIRCam), Near-Infrared Spectrograph (NIRSpec), Near-
Infrared Imager and Slitless Spectrograph (NIRISS), and
Mid-Infrared Instrument (MIRI) over its wavelength range of
0.6–28mm at spectral resolution R¼ 4� 3250. In principle,
all of these instruments can be used to study transiting exo-
planets and will provide a spectrophotometric precision of
10–100 ppm for time series observations spanning from hours
to days.

Several studies explored the potential for JWST to ob-
serve the targets provided by TESS, CHEOPS, and other
surveys by the time of its launch (e.g., Deming et al., 2009;
Batalha et al., 2015; Greene et al., 2016), and the transit
community already defined an Early Release Science (ERS)
case that focuses on testing relevant observing modes to
provide the data and expertise to plan the most efficient
transiting exoplanet spectrophotometry characterization
programs in later cycles (Stevenson et al., 2016). Following
these studies, it is anticipated that JWST will enable a survey
of *100 gas and ice giants and *10s of sub-Neptune-sized
planets covering a broad range of spectral types, metallicity,
and orbital parameters. These results will advance our un-
derstanding of the formation and evolution of these planets
(see Section 5.3), as well as the nature of possible high-
altitude haze/clouds that suppress the molecular signatures.

JWST will also provide the very first opportunity to
characterize the atmospheres of temperate terrestrial planets
via transmission spectroscopy, spectroscopy of thermal
emission (Section 3.3 below), and the orbital phase curves
(Section 4.2 below), but only after co-adding tens of transits,
or tens to hundreds of hours in total integration time, de-
pending on the details of the target system (Eq. 4). For a few
nearby systems with late-type stars, first investigations of
signs of habitability and isolated, inconclusive biomarkers
may be possible if the systematic noise of JWST turns out to
be sufficiently smaller than the signal levels. For example,
Barstow and Irwin (2016) suggested that an Earth-like
ozone layer, if it exists, could be detected in 30 transits by
JWST for TRAPPIST-1c and TRAPPIST-1d, assuming an
Earth-like atmosphere. As an exotic possibility, planets in
the HZs of white dwarfs, once detected in the solar
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neighborhood, could constitute other golden targets, having
significantly larger signals in transmission spectra; for such
targets, even the weaker signature of O2 could be observable
after a timeframe as short as several hours of integration
(Loeb and Maoz, 2013). For the prospects of eclipse spec-
troscopy and phase curves of potentially habitable planets
with JWST, see Section 3.3 and Section 4.2 below, re-
spectively.

In the 2020s, three 30/40 m class ground telescopes, often
called Extremely Large Telescopes (ELTs), are planned to
operate. These are the Giant Magellan Telescope (GMT;
24.5 m diameter), the European-Extremely Large Telescope
(E-ELT; 39 m diameter; now renamed as ELT), and the
Thirty-Meter Telescope (TMT; 30 m diameter), expected
to be operational in 2023, 2024, and 2027, respectively.
A high-resolution (R = 25,000–120,000 spectrograph, G-
CLEF (Szentgyorgyi et al., 2012), will be installed as one of
the first-light instruments on GMT, while other telescopes
also contemplate ultra-stable high-resolution spectrographs
in their instrumentation plans. The prospects for the detec-
tion of molecular features in transmission spectra with such
instruments depend on the assumptions of the technical
specifications for the proposed instruments and telescopes,
and the type of noise sources considered. The 0.76 mm
oxygen feature of a planet around a nearby (*5 pc) late M-
type star could be detected after about 100 transits and 30–
50 transits with a G-CLEF-like instrument on board GMT
and ELT, respectively, supposing the planet possesses an
Earth-like atmosphere (Snellen et al., 2013; Rodler and
López-Morales, 2014). The nominal specification for the
proposed high-resolution instrument (HIRES) for ELT
suggested that for TRAPPIST-1b and TRAPPIST-1c, one
would be able to detect the 1.3–1.7 mm H2O band at a SNR
of 6 in 2 transits and the 0.9–1.1 mm H2O band in 4 transits
(HIRES team, private communication).

The large apertures of ELTs will improve photometric
precision and hence in principle benefit the conventional
low-resolution transmission spectroscopy (Pallé et al.,
2011). However, this technique relies on the simultaneous
observations of nearby bright stars to correct for Earth’s
atmospheric effects and variability, and the small field of
view of ELTs will make it trickier to find suitable com-
parison stars.

3.3. Chemical/Climatological characterization:
Eclipse spectroscopy

3.3.1. Method and sensitivity. Dayside emission of tran-
siting planets may be identified using secondary eclipses
(planet occultation by the star) by taking the difference be-
tween the out-of-eclipse and in-eclipse spectra. Figure 5 shows
the simulated thermal emission spectrum of Earth relative to
the solar spectrum (black), together with theoretical spectra of
Earth-sized planets with Earth-like atmospheres around dif-
ferent spectral types of stars, modeled with 1D photochemical
models (Rauer et al., 2011). As indicated in the figure, the
contrast between the planetary flux and the stellar flux in
the planetary thermal range, CMIR, becomes on the order of
1–100 ppm at ‡8mm for temperate Earth-sized planets around
late-type stars. In this range, features of H2O (5–8mm) CH4

(7.7mm), O3 (9.6mm), and CO2 (15mm) are seen. For those
around G-type stars, CMIR(1 ppm, easily overwhelmed by
the expected noise floor. An estimate of the contrast in the
thermal regime is given by:

CMIR kð Þ ~ 54 ppm
Rp

R�

� �2 B k; Tp

� �
B 10 lm; 300 Kð Þ

� �
R?

0:1R�

� �� 2
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B 10 lm; 2500 Kð Þ

� �� 1

; ½6�

FIG. 5. Modeled thermal emission spectra of cloud-free Earth-like planets around the Sun (black), AD Leo (red), an M0 star
(green), an M5 star (blue), and an M7 star (magenta), taken from Rauer et al. (2011). Reproduced with permission ª ESO.
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Assuming an idealized photon-noise-limited situation
with low-resolution spectroscopy, the SNR can be ex-
pressed as

SNR ~
N?CMIRdffiffiffiffiffiffiffiffi

2N?

p ~ 1:6 d
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[7]

where d is the relative depth of the spectral features. Again,
the fiducial values for the parameters mimic TRAPPIST-1, a
late M-type star. We may consider lower wavelength re-
solution (i.e., larger Dl) as the spectral features are typically
broader in the mid-IR. Still, depending on the configuration,
eclipse spectroscopy is as demanding as transmission
spectroscopy. Eclipse spectroscopy will not be feasible for
planets around solar-type stars nor in the visible/near-IR
range, where the contrast between the star and the planet is
smaller than 1 ppm (Eq. 11 below).

3.3.2. What can be studied?

Gases and thermal profile. Eclipse spectroscopy works best
around 8–30mm where the planet-to-star contrast is large while
the planets are not too faint. Signatures of major small mole-
cules in this range include O3 (8.9, 9.6, 14mm), CO2 (15mm),
CH4 (7.7mm), SO2 (8.6, 18mm) and N2O (7.7, 8.6, 17mm); see
Figure 2. In addition, volatile organic compounds produced
through biological processes also have absorption bands (e.g.,
Domagal-Goldman et al., 2011). Compared with transmission
spectrum, emergent thermal emission can probe deeper at-
mosphere due to the short optical path length and is less likely
to be obstructed by tenuous haze layers.

The molecular features in thermal emission depend not only
on the abundance of molecules but also upon the temperature
profile of the atmosphere. The decreasing temperature as a
function of altitude results in absorption features, while thermal
inversion layers can create emission features. If the planet does
not have a strong vertical temperature gradient, molecular
features are weakened. Thus, some information of vertical
temperature gradient can be obtained. Once the detailed fea-
tures of line shapes could be resolved, which is unlikely
through 2030, they would further constrain the vertical tem-
perature profiles. If the atmosphere is optically thin at some
thermal wavelengths, thermal emission spectra can constrain
the surface temperature, one of the key factors for habitability.

While thermal emission spectra are sensitive to these
properties, the interpretation as an inverse problem may not
be straightforward (for a retrieval study for a cloud-free
Earth-like atmosphere, see von Paris et al., 2013). The
presence of clouds and the three-dimensional heterogeneity
further complicates the problem. The full retrieval would
require sophisticated parametric models of atmospheres as
well as high-precision observations to feed into the models.

The ingress and egress light curves of the planetary eclipse
have offered the opportunity to obtain 2D maps of the dayside
of hot Jupiters (de Wit et al., 2012; Majeau et al., 2012).
Applying to Earth-sized planets, however, would be exceed-
ingly difficult due to the weakness of the planetary signal.

Solid surface. If the atmosphere is optically thin, we will
see the spectroscopic features of the surface rocky materials.
Notable features in the mid-IR include bands from Si-O
bonds of rocky materials around 10 and 20 mm (Hu et al.,
2012a; Fig. 2).

3.3.3. Opportunities through 2030. Since the eclipse
spectroscopy of potentially habitable planets favors the mid-
IR observations, space observatories work best. So far, most
eclipse spectrophotometry of Jupiter-like planets has been
performed with the Spitzer space telescope. In the near fu-
ture, JWST (Section 3.2.3) will be the most promising ob-
servatory. However, a smaller-than-predicted noise floor
would be necessary to detect spectral features in the thermal
emission through eclipse observations.

4. Characterizing Planets with General Orbital
Inclination

In this section, the methods to characterize potentially
habitable planets with general orbital inclination are consid-
ered. While non-transiting planets are missed by the observa-
tion techniques unique to transiting ones, they are in general
closer to the Earth, benefiting other follow-up observations. In
the following, astrophysical characterization of nontransiting
planets (Section 4.1), chemical, climatological characterization
through phase curve measurement (Section 4.2), high-contrast
imaging (Section 4.3), and the spectral method (Section 4.4)
are discussed. The format is similar to that of Section 3.

4.1. Astrophysical characterization

4.1.1. Methods and sensitivity. Radius. Although radius
is one of the very basic properties of planets, radii of
nontransiting planets are difficult to measure directly in the
foreseeable future. When planets are imaged in the visible
to near-IR range where the scattered light dominates, the
disk-integrated intensity is essentially proportional to
squared radius times planetary albedo (Eq. 11 below), so in
general the radius is degenerate with albedo. For syn-
chronously rotating atmosphere-free planets, planetary ra-
dii (as well as albedo) may be estimated from the phase
curves (Maurin et al., 2012), although such planets will not
be regarded as potentially habitable. Disk-integrated
spectra in the mid-IR (i.e., thermal emission) could better
constrain planetary radius (e.g., Des Marais et al., 2002),
but currently there are no projects that are capable of such
observations (Section 6.2.1).

Mass. Planetary mass can be estimated through the RV
method, as in the case of transiting planets. Without another
type of observation, however, the degeneracy between the
planetary mass and the inclination angle cannot be disen-
tangled (Eq. 1), while statistically the expected value of
the true planetary mass is 4/p of the measured value for
mp sin i. The true mass can be obtained if the inclination is
constrained from other types of observation, for example,
multi-epoch direct-imaging observations (Section 4.3) or the
Doppler shift of the planetary spectra (Section 4.4). Regarding
the sensitivity to HZ Earth-sized planets, the same argument
holds as described in Section 3.1: those around solar-type
stars are more challenging, while those around nearby late-
type stars will probably be accessible.
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Another potential probe of planetary mass is astrometry,
the method to detect the reflex motion of the star due to the
planetary orbital revolution as a periodic movement of the
star along the celestial sphere. Astrometry is used by the
ongoing Gaia mission to discover large, long-period planets,
but Gaia is unlikely to detect temperate Earth-sized planets
(Perryman et al., 2014). The capability of astrometry de-
tecting temperate Earth-sized planets is being discussed in
the context of the LUVOIR-type far-future mission concept
(Section 6.1.2).

Orbital elements. In a similar manner to the case of
transiting planets, semimajor axis and eccentricity will be
constrained from RV observations if detected. Otherwise,
multi-epoch direct-imaging observations (Section 4.3 be-
low) can constrain the orbits.

As discussed in Section 3.1, orbital ephemeris is im-
portant for follow-up observations. For direct-imaging ob-
servations, the information of orbital ephemeris enables
predictions of the timing of the maximum angular separa-
tion, and thus accurate ephemerides from RV data will help
optimize the use of the precious hours of high-demand space
telescopes (Kane, 2013). Orbits of longer-period planets are
more difficult to analyze because the uncertainty in the
planetary parameters (in particular orbital period and epoch
of periastron passage) are large, and data across multiple
orbits will substantially improve the estimates.

4.2. Chemical/Climatological characterization:
Phase curves

4.2.1. Method and sensitivity. Planetary spectra that
vary as a function of the star-planet-observer angle (phase
angle) may be extracted as a time-varying component of the
star + planet spectra, synchronous to the planetary orbital
period. In general, variation amplitude is larger for planets
whose orbit is closer to edge-on (i*90�) due to the large
dynamic range of phase angle along its orbit. Thus, while it can
be used for nontransiting planets, transiting planets are the
most favorable targets. Phase curve variations would in prin-
ciple exist both in scattered light and in the thermal emission,
but the scattered light of potentially habitable planets is less
than 1 ppm of the stellar light (Eq. 11 below) and unfeasible to
detect. The thermal emission phase curves of those around late-
type stars tend to have the best star-to-planet contrast and are
most likely to be detectable. Even for such systems, the con-
trast is on the order of 10–100 ppm and the phase variation
amplitude is smaller than that, so this level of the long-term
stability of the stellar radiation and the instruments is a pre-
requisite for a successful observation. The SNR estimate of
thermal emission phase curves in an idealized photon-noise-
limited case would be similar to that of secondary eclipse (Eqs.
6 and 7), except for the replacement of d by the relative am-
plitude of phase curves. However, the phase variation itself
may be searched for in broadbands (i.e., larger Dl), which can
loosen the observational demands.

4.2.2. What can be studied?

Heat redistribution – atmosphere/surface flow. The
broadband thermal emission phase curves are a useful probe
of the thermal redistribution across the globe, which may
constrain the potential presence of atmospheres (or perhaps a
flow on the surface) (Knutson et al., 2007; Demory et al.,

2016). For example, atmosphere-less planets exhibit strong
day-night contrast in thermal emission, which results in a
large phase variation amplitude, while planets with thick at-
mosphere tend to have horizontally more uniform emission
temperatures, minimizing the phase variations (e.g., Selsis
et al., 2011). The phase curves also depend on the spin state,
thermal inertia, and eccentricity. For example, with non-zero
thermal inertia, non-synchronously rotating planets exhibit
more modest horizontal temperature gradient, hence smaller
phase variations, than synchronously rotating planets (e.g.,
Selsis et al., 2013).

Clouds. Thermal phase curves are affected by the large-
scale cloud patterns if they exist. Interestingly, synchro-
nously rotating planets covered with oceans tend to develop
thick clouds in the substellar region and produce charac-
teristic patterns in the orbital phase curves when highly ir-
radiated (Yang et al., 2013; see also Hu and Yang, 2014, for
a more realistic treatment of ocean dynamics); this could
even indirectly imply the underlying surface liquid water.

Gases. Spectrally resolved phase curves, or ‘‘variation
spectra’’ (Selsis et al., 2011), imprint the signatures of atmo-
spheric molecules because their wavelength-dependent opacity
changes the pressure level at which the phase curves probe,
and the different pressure levels may have different horizontal
patterns of temperature (e.g., Stevenson et al., 2014). The list
of the potential target molecules is similar to that for ther-
mal emission eclipse spectroscopy (see Section 3.3.2).

4.2.3. Opportunities through 2030. As in the case of
eclipse spectroscopy, JWST is a promising observatory for
thermal emission phase curves of exoplanets, potentially
down to temperate Earth-sized planets around nearby late-
type stars. The thermal phase variation amplitude of Prox-
ima Centauri b is estimated to be on the order of 10 ppm or
less if it possesses an Earth-like atmosphere, and *100 ppm
if it is atmosphere-less, assuming 60-degree inclination
(e.g., Kreidberg and Loeb, 2016; Turbet et al., 2016: Boutle
et al., 2017). These variations could be observable with the
Low-Resolution Spectrograph (LRS) mode of MIRI on-
board JWST, depending on the noise floor and the stability
of the stellar radiation, and could provide the clues to the
potential presence of an atmosphere.

4.3. Chemical/Climatological characterization:
High-contrast imaging

4.3.1. Method and sensitivity. Direct imaging allows
access to exoplanets at all orbital inclinations, thus offering
the only path to characterizing the full suite of exoplanets in
the solar neighborhood. However, direct imaging of exo-
planets separated from the host star is greatly complicated
by stellar glare and must rely on instruments to block the on-
axis light from target stars while redirecting the effects of
diffraction. Coronagraphs and starshades are currently two
possible starlight suppression approaches. The former is
placed within the payload of a space telescope (i.e., an
‘‘internal’’ occulter), whereas the latter is its own spacecraft
positioned many tens of thousands of kilometers away from
a space telescope (hence an ‘‘external’’ occulter).

For both methods, the smallest angular separation they
can probe for the faint planetary signal (inner working angle
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or IWA) should be smaller than the largest angular separa-
tion between the planet and the star, D, which is:

D¼ 100 mas
a

1 AU

� � d

10 pc

� �� 1

[8]

where ‘‘mas’’ stands for milliarcsecond. The IWA for co-
ronagraphs is expressed by

IWA¼ 103 mas
R
2

� �
k

0:6 lm

� �
D

2:4 m

� �� 1

[9]

where R is the minimum number of beamwidths between
the star and the planet and is a function of the coronagraph
design, and ranges from 2 to 4 at present. For starshades, the
IWA is approximately

IWA¼ 2Fk
D¢

~73 mas
F

10

� �
k

0:6 lm

� �
D¢

34 m

� �� 1

[10]

where F is the dimensionless Fresnel number (about 10 for
10-10 contrast) and D¢ is the starshade diameter. These re-
lations mean that, for a fixed-size telescope or starshade,
the number of accessible exoplanets at longer wavelengths
is greatly reduced relative to the number accessible at
shorter wavelengths. Both methods are thus most effec-
tive for observations in the visible range where habitable
exoplanets are seen in scattered light; the scattered light
spectrum of Earth is shown by the solid line in Figure 6
(Robinson et al., 2011).

Both methods must suppress the stellar light to the level
of planetary light. The contrast between the scattered

light of the planet (at the maximum separation) and the
star, CVIS�NIR, is

CVIS�NIR~
2

3p

R2
p

a2
A~10� 10 Rp

R�

� �2
a

1 AU

� �� 2 A

0:3

� �
[11]

where A is planetary albedo. The contrast for temperate
planets around late-type stars is improved to (*10-9–10-6),
corresponding to the smaller orbital distance (0.01–0.3 AU),
while the angular separation from the star becomes smaller
(Eq. 8).

Figure 7 diagrams the contrast and the maximum sepa-
ration from the host star of the Solar System planets at 10 pc
and known exoplanets (points), as well as the performance
of the existing and future instruments (lines; detailed be-
low). Ongoing efforts are pushing the sensitivity from
upper-right corner toward lower-left, where an Earth-twin
resides.

A coronagraph camera has a complex optical train that
controls diffraction by using one or more image focal and/or
pupil planes to block and beam-shape the on-axis starlight
with small specialized masks. Coronagraphs have been used
for decades in solar observations, have flown on HST, and
will be flown on JWST, and are now used effectively with
ground-based telescopes equipped with adaptive optics. The
best operational contrast sensitivity achieved to date, from
either the ground or from space, is 3 · 10-7 at 0.4 arcsec
separation by the SPHERE instrument on the VLT observ-
ing Sirius (Fig. 7).

In space, a coronagraph with a wavefront sensing and
control system, as is now planned for WFIRST, can achieve
much higher contrasts (neither HST nor JWST are equipped
with this capability). Outside the atmosphere, wavefront

FIG. 6. A modeled scattered light spectrum of Earth (blue solid line) and the mock observation of an Earth twin at 5 pc
away assuming a LUVOIR-type telescope with 12 m diameter and 30 hr of integration time, with resolution R¼ 150 (blue
points with error bars), generated at http://jt-astro.science:5106/coron_model. The theoretical line and the noise model are
based on Robinson et al. (2011) and Robinson et al. (2016), respectively.
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FIG. 7. The star-planet contrast and the star-planet separation of known planetary systems (points), and the performance
of existing and future high-contrast imaging instruments (lines). This is the October 2017 version of a plot maintained by the
NASA Exoplanet Exploration Program Office. The orange points correspond to the near-IR brightness of known self-
luminous directly imaged planets, while the open circles show their theoretical I-band contrast. The black points show the
theoretical V-band contrast of planets detected by the RV method. The Solar System planets at 10 pc at the maximum
separation are presented in colored points; the dashed lines from these points indicate their orbital phase variations as seen
from a direction inclined 30 degrees from the ecliptic. The self-luminous planets detected to date are at contrasts of 10-6 and
brighter, while 10-9 contrasts are needed to detect Jupiter in scattered light and 10-10 to detect Earth as seen from out-
side. The data sources for the instrumental performance lines are as follows: The JWST NIRCam and HST ACS curves
were provided by John Krist for Lawson et al. (2012). The GPI curve is for H band and provided by Bruce Macintosh
(personal communication). The SPHERE-Sirius curve is for K band (Vigan et al., 2015, Fig. 2). The 2017 WFIRST CGI
curve was provided by deputy instrument scientist Bertrand Mennesson (personal communication). The starshade curve is
from Stuart Shaklan (personal communication). The performance curves shown for it are preliminary as of October 2017
and subject to revision.

FIG. 8. Flight configuration of a 34 m starshade in exo-Earth search mode (bandpass of 425–605 nm) was studied as part
of the Exo-S Extended Study (https://exoplanets.nasa.gov/internal_resources/225; Seager et al., 2015). This particular
configuration attempts to maximize exo-Earth yield and assumes a 3-year mission; other options considered included both
larger and smaller starshades with shorter and longer mission lifetimes.
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correction is much more precise than from the ground, and
the system will be stable for hours or days as opposed to
the millisecond timescales of atmospheric disturbances. In
ground vacuum tests, coronagraphs augmented with wave-
front control have already demonstrated 6 · 10-10 contrast
with a 10% bandwidth in a 284 (l/D)2 field extending from
3–15 l/D (Trauger et al., 2013). Work is ongoing to bring
the performance to the 1 · 10-10 requirement at an IWA of 3
l/D (NASA’s Exoplanet Exploration Program Decadal
Survey Testbed; N. Siegler, private communication).

A starshade is an external occulter (Fig. 8), and the effects
of diffraction are controlled by the precise analytical shape
of its petals, and the diffracted light is redirected away from
the receiving telescope, creating a dark shadow for which
the telescope can fly in formation. Starlight scattered from
orbiting planets arrives off-axis, misses the starshade, and
can be captured by the telescope (Fig. 8); for a more detailed
explanation, see the NASA-chartered Exo-S probe study
report (Seager et al., 2015).

Starshades present several key advantages over corona-
graphs. First, for a given telescope diameter, a starshade can
achieve smaller IWAs (Eq. 10). The smaller IWA enables
probing angular regions closer to the targeted stars as well as
a larger sample of stellar distances. Second, the achievable
contrast ratio is independent of the architecture of the tele-
scope. While segmented and obscured telescope apertures
currently pose diffraction challenges for coronagraphs at-
tempting to reach contrast ratios smaller than 10-9 at visible
wavelengths (a topic of active research; NASA’s Exoplanet
Exploration Program Segmented Coronagraph and Design
Analysis study; https://exoplanets.nasa.gov/exep/technology/
TDEM-awards), starshades can in theory create 10-10 or better
dark regions at telescope detectors independent of the aperture
architecture, reaching the sensitivity requirement to directly
image temperate Earth-sized exoplanets around Sun-like
stars. Lastly, starshades can be designed to perform at larger
bandwidths and, with fewer optics, significantly higher
throughput, thus potentially enabling higher-resolution spec-
trographs. A drawback, on the other hand, is that the complex
positioning of the two spacecraft and re-pointing will take
time—approximately 1–2 weeks—potentially challenging re-
peat observations for orbit determination and the measurement
of seasonal changes and phase angle effects.

The requirement of high-contrast imaging could be
loosened when a starlight suppression instrument is com-
bined with spectral separation methods (Section 4.4)
(Sparks and Ford, 2002; Riaud and Schneider, 2007; Ka-
wahara et al., 2014; Snellen et al., 2015). Several works
(Kawahara and Hirano, 2014; Snellen et al., 2015; Wang et al.,
2017) have investigated the potential of the combination
of high-contrast imaging instruments and high-resolution
(R*100,000) spectrograph, and showed that molecular sig-
natures of Earth-like planets around late-type stars may be
detected with high-contrast imaging instruments that achieve
*10-5 to 10-4 contrast (approximately improved by a factor of
103) when combined with high-resolution spectrograph. This
is probably a promising approach to spectral signatures of po-
tentially habitable planets with ground-based observatories.
See the next section (Section 4.4) for more discussions.

Another way to increase the detectability of the planet is
to utilize polarized light, taking advantage of the fact that
stars have low polarizations. Ideally, if the polarization from

the star is sufficiently low and the precision of the polar-
imetry is high, polarimetry alone would allow us to identify
the planetary component in the combined star + planet light.
Indeed, high-precision polarimetric observations attempted
to detect scattered light of hot Jupiter HD 189733 without
starlight suppression (Berdyugina et al., 2008, 2011; Wik-
torowicz, 2009; Wiktorowicz et al., 2015; Bott et al., 2016);
no conclusive detection has been obtained so far, however,
while the upper limits of tens of ppm was put. The polari-
zations of potentially habitable planets are expected to be at
an even lower level, and polarization on its own will likely be
insufficient for planet detection. Instead, a combination of
direct-imaging instruments and polarimetric instruments is
a more likely way to utilize this technique.

4.3.2. What can be studied? Once the starlight is suf-
ficiently suppressed, and the exoplanet lies outside of the
instrument’s IWAs, then the exoplanetary photons can be
directly analyzed in the spectral and time domains. It can
also provide, in a single observation, the full system context
view of multiple exoplanets and zones of dusty debris.

Gases. Spectroscopy of Earth-like planets in the visible
to near-IR range shows the molecular signatures including
O2 (0.63, 0.69, 0.76, 1.27mm), O3 (< 0.35, 0.5–0.7 mm), H2O
(0.72, 0.82, 0.94, 1.13, 1.4, 1.9 mm), CO2 (1.04, 1.20, 1.43,
1.6, 2.0, 2.7 mm), CH4 (0.72, 0.78, 0.88, 0.97, 1.15, 1.4, 1.66,
2.3 mm) (see Fig. 2), while the features at longer wave-
lengths reduce the number of accessible targets due to the
limitation of IWA. A massive O2-dominated atmosphere
would produce strong O2-O2 features (1.06, 1.27 mm), po-
tentially diagnostic for a false-positive scenario for O2 as a
biosignature (Schwieterman et al., 2016). Direct-imaging
spectroscopy is more sensitive to the compositions in the
lower atmospheres than transmission spectroscopy, and is
less affected by tenuous haze layer or high clouds, due to the
shorter optical path length.

The spectral resolution (R) required for a detection
clearly varies from band to band. For example, assuming
an Earth-like atmosphere, R>20 will be necessary to detect
H2O absorption bands at 0.94mm, while the convincing
detection of the narrower O2 band at 0.76mm likely requires
R>100 (Brandt and Spiegel, 2014). Some scattering and
absorption features are broad enough to be captured with
fairly low-resolution spectroscopy or multiband photometry.
For example, Rayleigh scattering, scattering/absorption by
clouds and haze layers broadly affects the wavelength de-
pendence of the scattered light spectra (Hu et al., 2013; Arney
et al., 2016; Checlair et al., 2016). Broad absorption features
of O3 around 0.6mm may be inferred from the colors of Earth
(Krissansen-Totton et al., 2016).

Solid surface. Scattered light spectra include character-
istic features of the surface, if the atmosphere is optically
thin at least in some areas. Reflectance spectra of commonly
seen materials in the Solar System are shown in the lower
panel of Figure 2. Spectroscopic features of surface include
absorption bands of rocky materials due to charge transfer
(<0.4 mm) and crystal-field effects (around 1mm) and of
O-H bonds of ice and hydrated materials (1.5, 2, 3 mm),
whose exact optical properties depend on the detailed
composition and grain size (e.g., Ford et al., 2001; Hu et al.,
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2012a; Fujii et al., 2014). Importantly, for the first time, we
will be able to access surface reflectance biosignatures such
as vegetation’s red edge (Ford et al., 2001; Seager et al.,
2005; Montañés-Rodrı́guez et al., 2006; Tinetti et al., 2006;
Kiang et al., 2007a, 2007b), ‘‘purple edge’’ (Sanromá et al.,
2014), and the peculiar reflectance spectra that occur in a
variety of biological pigments of diverse functions (Hegde
et al., 2015; Schwieterman et al., 2015), some of which are
shown in Figure 2; see Schwieterman et al. (2018) for a
comprehensive review. It would be possible that exo-
biospheres interact with incident radiation to imprint pecu-
liar signatures similar to what we observe on Earth.

Surface liquid bodies. The most essential aspect of cli-
matological characterization for HZ planets is the presence of
an ocean. This can be probed in scattered light through the
peculiar anisotropy of scattering by liquid surface, where the
reflectivity increases with grazing incident angle (ocean’s
‘‘glint,’’ Williams and Gaidos, 2008; Oakley and Cash, 2009;
Robinson et al., 2010, 2014a, Robinson, 2017). This nature of
an ocean exhibits itself as an anomalous increase in planetary
albedo at the crescent phase. At such a phase, however, the
angular separation between the star and the planet is small,
and the scattered light is dark, making direct-imaging ob-
servations challenging, possibly requiring the direct-imaging
missions beyond 2030.

Planetary albedo. Because the planetary scattered light is
proportional to R2

p AðkÞ, the absolute value of planetary al-
bedo A (k) is known in a model-independent manner only
when the planetary radius is known from, for example,
transit observations, or perhaps from the assumption of in-
terior composition if the mass is known from, for example,
RV observations. Planetary albedo would yield the equi-
librium temperature, an important reference point for mod-
eling of the temperature profile.

Surface pressure, temperature. A possible indicator of
surface pressure in scattered light spectra is the Rayleigh
scattering feature. Rayleigh scattering slope essentially de-
pends on the molecular-specific cross section and the column
number density of the atmosphere, the latter of which is re-
lated to the atmospheric pressure through the surface gravity

and the mean molecular weight of the atmosphere. Thus, es-
timates of these parameters tend to be degenerate. The pre-
sence of clouds as well as the wavelength-dependence of
surface reflectance can further puzzle the interpretation. The
atmospheric pressure also affects the absorption features of
molecules. Additional use of signatures of dimers, which vary
as the square of the density, may be useful to constrain surface
pressure (Misra et al., 2014a). Despite the direct relevance to
habitability, surface temperature is difficult to estimate from
the scattered light spectra, as it negligibly affects the spectra in
this regime (Robinson, 2017).

Spin parameters. Time-resolved direct-imaging observa-
tions at the timescale of planetary rotation, if/once they
eventually become feasible, potentially provide additional,
key dimensions in climatological characterizations. Unless
the surface is completely uniform, rotation rate can be
measured as a periodicity of the disk-integrated planetary
light; rotation rate is one of the fundamental parameters in
modeling the climate and habitability of the planets. Earth as
a point source changes its albedo by 10–20% in one rotation
(Livengood et al., 2011, also shown in Fig. 9), and Pallé
et al. (2008) found that the periodicity can be identified
through the autocorrelation analysis despite the variable
cloud cover, thanks to the consistent geographic features
(e.g., continents). Another important parameter affecting
climate, obliquity, could also be inferred through examining
the long-term light curves which involve rotational and or-
bital variations (Kawahara and Fujii, 2010, 2011; Fujii and
Kawahara, 2012; Kawahara, 2016; Schwartz et al., 2016).
The rotation rate of Jupiter-like planets has been measured
by the broadening of the molecular lines using high-
resolution (Snellen et al., 2014), but similar observations of
an Earth-like planet would be exceedingly difficult; the ro-
tation velocity of the Earth is *26 times smaller than Ju-
piter’s.

Surface heterogeneity, partial cloud cover. From the ro-
tational variation of scattered light spectra, the heterogeneity
of the surface composition may be constrained (e.g., Cowan
et al., 2009, 2011; Fujii et al., 2010, 2011, 2017b; Cowan
and Strait, 2013). For example, combinations of a liquid
surface, particulate rocky materials, and/or snow/ice
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FIG. 9. Seven-band diurnal light curves of
the disk-integrated scattered light of Earth,
obtained by the EPOXI mission (Cowan et al.,
2011; Livengood et al., 2011). Left panel: The
equatorial observation started on March 18,
2008, with phase angle 57�. Right panel: The
north-polar observation started on March 27,
2009, with phase angle 87�.

758 FUJII ET AL.



contribute to a marked contrast in scattered light spectra at
different wavelengths (Figs. 2 and 9). The surface hetero-
geneity may imply geological processes over the history of
the planet, including plate tectonics and volcanic activities
(Fujii et al., 2014). The presence of variable clouds could be
probed through the deviation of daily light curves from the
average light curve (Pallé et al., 2008), or the variability of
molecular features (Fujii et al., 2013). Rotational and orbital
variations together would even allow us to recover the two-
dimensional surface map (Kawahara and Fujii, 2010, 2011;
Fujii and Kawahara, 2012).

Additional clues from polarization. Once the planet is
directly imaged, the polarization of the planetary light may
be analyzed when combined with the proper instrument.
Polarimetry of Earth includes some interesting features. In
theory, Rayleigh scattering by the atmosphere causes a
polarization peak near a phase angle 90 degrees, whereas
the polarization of reflection by a liquid water surface is
the highest at phase angle 106 degrees, and water droplets
have their polarization peak at around 30–40 degrees,
while multiple scattering reduces the polarization (Stam
et al., 2004; McCullough, 2006; Bailey, 2007; Stam, 2008;
Williams and Gaidos, 2008; Zugger et al., 2010, 2011;
Karalidi and Stam, 2012). Earthshine observations con-
firmed that the effect of Rayleigh scattering dominates in
the disk-integrated polarized light of Earth at short wave-
lengths (Sterzik et al., 2012; Takahashi et al., 2013), and
the polarization decreases to *9–12% in the near-IR
continuum (Miles-Páez et al., 2014). The ‘‘absorption’’
features of atmospheric molecules, which exhibit them-
selves as ‘‘peaks’’ in polarized light because of the reduced
contribution from multiple scattering (Stam, 2008), are
probably as high as 30% (Miles-Páez et al., 2014). These
features potentially provide additional evidence about the
planetary surface environment.

4.3.3. Opportunities through 2030. Direct imaging of
Jupiter-sized distant planets has been successfully per-
formed with 10 m class ground-based telescopes, and these
observations achieved a contrast of 10-4 to 10-6. This level
of high-contrast technique could potentially be combined
with high-resolution spectrograph to obtain spectral features
of smaller planets; we discuss such an approach in Section
4.4. The 30 m class telescopes (ELTs) to be built in the 2020s
are also considering coronagraphic instruments, and de-
pending on the performance of such instruments, they might
achieve high-contrast imaging of potentially habitable planets
even without high-resolution spectroscopy. Their large aper-
tures can make the IWA as small as 10 mas in principle (Eq.
9), which allows us to probe potentially habitable planets
around nearby late-type stars. The accessible targets may also
include temperate Earth-sized planets around M-type stars in
the prolonged pre-main-sequence stage, such as 40 Myr AP
Col, 8.4 pc away (Ramirez and Kaltenegger, 2014). Once the
habitable planets are detected in high-contrast imaging, an
Earth-like O2 absorption feature at 1.27mm would be de-
tectable (Kawahara et al., 2012).

Temperate Earth-sized planets orbiting solar-type stars,
however, may never be directly imaged from the ground,
due to the 10-10 contrast requirement, which is limited by
Earth’s atmosphere and the residual uncorrected wavefront

error (Traub and Oppenheimer, 2010, pp 146–147). To
achieve such contrast, a space-based observatory will be
necessary. Although JWST is equipped with coronagraphic
instruments to perform high-contrast imaging of Jupiter-
like planets, they will not be able to image Earth-sized
planets.

The next space-based opportunity for high-contrast ima-
ging is The Wide Field InfraRed Survey Telescope
(WFIRST), which is NASA’s next large space observatory
with an expected launch date of 2025 and will operate for at
least 6 years. Its prime instrument is a 288 megapixel near-IR
camera designed to survey the extragalactic sky for dark
energy science and to monitor the galactic bulge for gravi-
tational microlensing events. In 2013 the mission was rede-
signed to use a surplus 2.4 m telescope and, with the larger
aperture, a second instrument was added: an optical corona-
graph for exoplanet direct imaging. The coronagraph instru-
ment (‘‘CGI’’) will be the first space-based demonstration of
precision wavefront control that is needed to achieve an
image contrast ratio approaching a billion to one at sub-
arcsecond separations. CGI includes both Shaped Pupil and
Hybrid Lyot coronagraph masks, a pair of 48 · 48 actuator
deformable mirrors, and a low-order wavefront sensor to
compensate for telescope instabilities. CGI will enable stud-
ies of dozens of giant planets in scattered light around stars
within *20 pc of the Sun, using photometry or R~50 spec-
troscopy over a 0.6–0.95mm bandpass. CGI will not be ca-
pable of studying Earth twins, but it will have the contrast
sensitivity and angular resolution to study larger planets if
they are present in the HZs of half a dozen nearby stars. With
luck, WFIRST CGI could obtain the first imaging detection
and crude spectroscopy of large temperate terrestrial planets.

While not baselined, a starshade flying in formation with
WFIRST (Fig. 8) offers the critical capability of directly
imaging terrestrial planets in the HZ of solar-type stars. The
2015 NASA-chartered starshade probe study was extended to
optimize the exoplanet yield of a technology demonstrator
WFIRST Starshade Rendezvous mission. The most likely
scenario (included in the extended study’s final report [https://
exoplanets.nasa.gov/internal_resources/225]), factoring in
observational completeness, predicted 28 HZs of solar-type
stars could be surveyed by WFIRST for Earth-sized exopla-
nets with a 34 m starshade over a 3-year mission. Assuming a
conservative occurrence rate of potentially habitable planets
(g�) of 10%, stellar sky brightness of 21 mag/sq arcsec (zodi
and exo-zodi), and an optical throughput of 28% using the
WFIRST CGI optics, 2–3 exo-Earth detections were predicted
with a SNR of 6. Of those, one could have its spectrum taken
within a visible bandpass. Assuming R ~ 70, spectral features
such as water vapor, oxygen, and potentially even Rayleigh
scattering of an exo-Earth atmosphere could be identified.
These signatures, along with cloud parameterization and
other assumptions, could provide quantitative constraints on
oxygen and water vapor mixing ratios along with surface
pressure (Feng et al., 2018). Smaller and less expensive
‘‘technology demonstrator’’ starshades (20 m) with shorter
mission lifetimes were also included in the extended study,
resulting in only one predicted imaged terrestrial planet and
without characterization. A final specific starshade design
will be developed over the next couple of years by NASA
starshade technology activity managed by the Exoplanet
Exploration Program.
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4.4. Chemical/Climatological characterization:
Spectral separation

4.4.1. Method and sensitivity. Spectral methods may
also be used to extract the planetary component from the
combined star + planet spectra. In high-resolution spectra
(RT100, 000) where individual lines are resolved (Fig. 4),
the Doppler-shifted planetary atmospheric lines with respect
to the telluric lines and the stellar lines allow one to identify
the planetary component, along with the planetary line-of-
sight velocity (Snellen et al., 2010). While the planetary
signal is buried deeply in the overwhelmingly brighter
stellar flux, cross-correlation analysis of the observed spectra
with the modeled ones using many lines contributes to an
enhanced SNR. Such a technique was successfully demon-
strated by the molecular detections of hot Jupiters without
using planetary transits, eclipses, or high-contrast imaging.
For example, Brogi et al. (2012) detected the CO lines of t
Boötis b through high-resolution spectroscopy with the
Cryogenic Infrared Echelle Spectrograph (CRIRES) at VLT,
while de Kok et al. (2013) detected CO lines of HD189733b
using the same instruments. The stabilized instruments such
as HARPS and HARPS-N have also been used with smaller
telescopes (3.5 m) to make the first detection of the scattered
light of hot Jupiter 51 Peg b (Martins et al., 2015).

This method will be limited to ground-based observations
in a foreseeable future, as high-resolution spectrographs are
not planned to be on a space observatory. However, the
contrast between temperate Earth-sized planets and their host
stars at the wavelengths observable from the ground (*10-10–
10-6; Eq. 11) is much smaller than the successful observa-
tions so far (*10-3). Thus, several works (Sparks and Ford,
2002; Riaud and Schneider, 2007; Kawahara et al., 2014;
Snellen et al., 2015; Wang et al., 2017) have proposed the
combination of the high-resolution technique with a high-
contrast imaging instrument as a viable approach for de-
tecting atmospheric signatures of temperate Earth-sized
planets around late-type stars. After suppressing the stellar
component to the order of 10-5 or so, spectral identification of
the planetary component will be more feasible.

Recently, Snellen et al. (2017) proposed a related tech-
nique where space-based medium-resolution spectroscopy is
used to find spectral features of the planetary atmosphere in
the combined star + planet spectrum in the mid-IR range
where the planet-to-star contrast can be order of 10–100
ppm (for those around late-type stars). While the individual
lines are not fully resolved in medium-resolution spectros-
copy, the high-frequency features may be identifiable by
fitting with theoretical models.

One could also attempt to identify the molecular signatures
of planetary atmospheres even in the low-resolution star +
planet spectra, if the molecules should not be present in the
stellar atmosphere and thus can be safely attributed to the
planetary origin. The success of this method will critically
rely on accurately knowing the host star spectrum as well as
on the noise floor of the observed data.

4.4.2. What can be studied? Once the Doppler-shifted
planetary lines are detected, not only is the presence of
targeted molecules revealed, but also the planetary line-of-
sight velocity is obtained. This translates to the true mass
of the planet and orbital inclination when combined with

stellar RV measurements, contributing the astrophysical char-
acterization of the system.

In the visible to near-IR range where the scattered light
dominates over thermal emission, the contrast between the
planet and the star would indicate R2

pA (Eq. 11). In the mid-
IR regime where the thermal emission dominates, the de-
tailed characteristics of the spectral features can probe on
the vertical thermal profile of the atmosphere, as discussed
in Section 3.3.

4.4.3. Opportunities through 2030. By combining the
ultra-stable high-resolution spectrograph with the high-
contrast imaging techniques, the largest existing ground-
based telescopes might eventually acquire the potential to
access the nearest temperate Earth-sized planets. Lovis et al.
(2017) estimated that detection of the scattered light of
Proxima Centauri b (D*37 mas at the maximum separa-
tion) in the visible wavelengths would be possible with the
proposed upgrades to SPHERE high-contrast imager com-
bined with ESPRESSO high-resolution spectrograph, after
20–40 nights of total telescope time, assuming an Earth-like
atmosphere. Even marginal constraints on O2 may be ob-
tained with an intense use of the telescope.

The ELTs can in principle adopt the same technique.
Their larger collecting areas can substantially improve the
observational capabilities. For example, it has been esti-
mated that the atmospheric characterization of Proxima
Centauri b could be accomplished in about 6 nights using
the collecting area of the ELT (HIRES team, private com-
munication). The larger aperture also allows us to probe a
greater number of targets with the smaller IWA. Once cor-
onagraphic instruments and high-resolution spectrographs are
installed on the ELTs, they will offer promising and unique
opportunities for the targets around late-type stars.

In the mid-IR range where potentially habitable planets
around late-type stars have the planet-to-star contrast of the
order of 10–100 ppm, spectral signatures of the planetary
atmosphere could be searched for in the star + planet spec-
trum even without starlight suppression instruments, if the
observations have sufficiently low noise characteristics.
Kreidberg and Loeb (2016) estimated that the spectral feature
of O3 at 9.6mm of Proxima Centauri b, if present, could be
detected in the combined star + planet spectrum after months
of observation assuming photon-noise limited precision with
a JWST-like telescope. Snellen et al. (2017) suggested that
the medium-resolution spectrograph (MRS) mode of MIRI
on board JWST has a potential to detect 15mm CO2 feature
of Proxima Centauri b in 5 days, using their high-frequency
characteristics; such observations will require enabling the
time-series observations of MIRI/MRS. Clearly, these ob-
servations are contingent on a small noise floor.

5. Contextual Information

So far, we have focused on the properties of potentially
habitable planets themselves. In this section, we discuss how
the external contextual information other than the planetary
properties may be used to improve the characterization of
the planets in question. First, we mention the efforts to
characterize the host stars (Section 5.1), as one of the most
essential ingredients in assessing the planetary environ-
ment. We also consider the information of the architecture

760 FUJII ET AL.



of the target planetary system (Section 5.2), and the che-
mical characterization of the gaseous planet (or planets) in
the same system (Section 5.3), both of which will be more
easily available than the properties of terrestrial planets.

5.1. Properties of the host star

5.1.1. Mass, radius, SED in the visible/IR range. Precise
measurement of planetary mass and radius depends on ac-
curately knowing the host star, and the planetary climate is
largely affected by the spectral energy distribution (SED) in
the visible to near-IR range. The basic properties of the host
stars such as radius, mass, age, and effective temperature
may be estimated based on the observed spectra and the
distance (estimated from parallax), or near-IR spectroscopy
armed with stellar evolutionary models. Asteroseismology
provides additional information to characterize the stellar
properties (e.g., Huber et al., 2013), and more asteroseismic
data will become available along with searches for transiting
planets. In many cases, these basic properties are cataloged
with varying accuracy. Depending on the reliability of the
model used to derive these values, additional observations
of individual host stars may be needed to obtain more pre-
cise values for these parameters.

5.1.2. Activity (SED in UV, X-ray, superflares). Photo-
chemical reactions in the planetary atmosphere depend on
the SED in the UV range. Photochemistry affects the at-
mospheric profiles of composition and temperature, influ-
encing the detectability and reliability of some of the
biosignatures. For example, model studies (e.g., Segura
et al., 2005; Grenfell et al., 2012; Tabataba-Vakili et al.,
2016) show that the abundances of O3 and CH4 are sensitive
to the UV flux. The UV output may also abiotically produce
potential biosignature gases such as O2 (e.g., Hu et al.,
2012b; Domagal-Goldman et al., 2014; Tian et al., 2014). In
addition, powerful coronal mass ejections, or superflares
(Maehara et al., 2012, 2015), would interact with the
planetary magnetosphere and cause energetic particles to
flood into the atmosphere and induce in situ chemical re-
actions (Airapetian et al., 2016). Their results suggested that
Earth-like (N2-O2) atmospheres would form N2O, which
could then be a false positive for a biosignature. High-
energy radiation toward the X-ray range, called XUV
(roughly 1–1000 Å), drives atmospheric loss through ther-
mal mechanisms ( Jeans escape and hydrodynamic escape)
and nonthermal mechanisms (e.g., through the charge sep-
aration driven by XUV ionization; Airapetian et al., 2017).
Thus, these high-energy fluxes over the history of the star
critically impact atmospheric evolution.

The strength of stellar high-energy radiation is related to
the magnetic activity (stellar dynamo) (e.g., Noyes et al.,
1984), and they are negatively correlated with the age and
the spin rotation period (e.g., Wilson, 1966; Kraft, 1967;
Pallavicini et al., 1981; Wright et al., 2011; Astudillo-Defru
et al., 2017a). The profile of Ca II H and K lines is used as
an observational proxy of the activity (e.g., Wilson, 1966;
Kraft, 1967; Saar and Fischer, 2000; Queloz et al., 2001;
Wright et al., 2004), while Ha line is also becoming more
widely used as an activity tracer for low-mass stars (e.g.,
West et al., 2008; Gomes da Silva et al., 2011; Astudillo-
Defru et al., 2017b). With the increasing awareness of its
importance for exoplanet study, characterization of high-

energy radiation of a wide spectral range of stars is being
advanced using data from HST (UV), ROSAT, XMM-
Newton, and GALEX (X-ray) and through the development
of models to reconstruct the spectra in the wavelength range
that is difficult to observe (e.g., Engle and Guinan, 2011;
France et al., 2013, 2016; Stelzer et al., 2013; Loyd et al.,
2016; Youngblood et al., 2016).

5.2. Orbital architecture of the planetary system

While we will likely discover tens to about one hundred
Earth-sized planets around HZs in the coming decade, a
substantially larger number of giant planets and/or planets in
a variety of orbits that are easier to detect will also be dis-
covered. For example, TESS will discover >1000 planets
with radii larger than 2R� (Sullivan et al., 2015). New
ground-based transit surveys, including the Next Generation
Transit Survey (Wheatley et al., 2013), will also contribute
to unveiling the population of transiting planets. Continuous
efforts in RV monitoring will also uncover more planets. In
addition, using the astrometry method, the Gaia mission
(Casertano et al., 2008) is estimated to discover *21,000
large and distant planets during its nominal 5-year mission
(Perryman et al., 2014). Large and distant planets will also
continue to be targeted by ground-based direct-imaging
observations, as well as by the future coronagraphic in-
struments on JWST, GMT, TMT, ELT, and WFIRST. These
observations will add a significant number of samples to our
catalogue of planetary systems whose major architectures
(orbits, masses and/or radii of the planets) are known—How
is such information related to the future biosignature search?

In general, such information potentially has indirect im-
plications for planets of astrobiological interest through
planet formation processes. For example, Earth-sized plan-
ets in the HZ of systems with a hot Jupiter (or hot Jupiters)
may be volatile-rich in comparison to Earth, as a conse-
quence of the migration process; specifically, hot Jupiters
are believed to form farther out in the disk and then sub-
sequently reach short orbital periods through viscous mi-
gration, during which process material from beyond the
snow line is dragged inward, resulting in small planets with
high volatile inventories (Raymond et al., 2006). Likewise,
planets in systems whose architectures suggest inward mi-
gration (e.g., orbits in resonance) may have also formed
beyond the snow line and be volatile-rich (Izidoro et al.,
2014). However, planet formation and evolution processes
include many uncertainties, and at this point we cannot
make definitive predictions for the properties of individual
Earth-sized planets, given the variety of compositions that
can be produced under similar conditions (Carter-Bond
et al., 2012). Conversely, once we have obtained the spectral
information of the Earth-sized planets, this will provide,
among other things, insights into the history of the system.

Another implication from orbital architectures is the ef-
fect of other planets in the same system on the long-term
climate of the terrestrial planets of interest. Companion
planets, particularly giants, will cause a terrestrial planet’s
orbit and obliquity to evolve (Berger, 1978; Laskar and
Robutel, 1993), especially in the absence of strong tidal
forces. Such long-term variations have been shown to be a
powerful influence on climate, potentially inducing dramatic
changes in global surface temperature, ice/snow cover, and
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possibly carbon cycling (Hays et al., 1976; Spiegel et al.,
2010; Armstrong et al., 2014). Hence, climate modeling ef-
forts that seek to place a potential biosignature into context
should not neglect the orbital forcing of additional planets.

5.3. Characterization of larger planets in the system

While characterization of terrestrial planets will be ex-
ceedingly difficult, that of larger, gaseous planets will be
more feasible during the coming era, providing us with a
rich sample of characterized Jupiter-sized to Neptune-sized
planets. For example, TESS and CHEOPS transit observa-
tions combined with RV measurement will give the accurate
radius-mass relationship over a wide range of planetary si-
zes which will enable the determination of their gas frac-
tions and infer possible formation scenarios. Atmospheric
characterization of transiting gaseous planets will be per-
formed with JWST, GMT, ELT, and TMT. Proposed mis-
sions, in particular FINESSE and ARIEL will carry out
chemical surveys of 500 to 1000 transiting planets, prefer-
entially targeting larger, warmer planets. Spectroscopic
observations of phase variations could even provide three-
dimensional atmospheric mapping of gaseous planets, as
demonstrated in Stevenson et al. (2014). Complementary to
the transit observations, which are biased toward close-in
planets, Jupiter-sized planets at distant orbits can be ob-
served by direct imaging. Atmospheric characterization of
young distant Jupiter-sized planets through direct-imaging
observations has been successfully performed with existing
10 m class telescopes, and JWST, GMT, ELT, TMT, and
WFIRST will also be able to perform high-contrast imaging
of Jupiter-sized distant planets both in thermal light and in
scattered light—If gas giants are present in the same plan-
etary system as the terrestrial planets of astrobiological in-
terest, what can characterization of these larger planets tell
us about the habitability of terrestrial planetary companions?

The properties of gas giant atmospheres will provide
additional insights into planet formation. For example, the
core mass, which may be constrained from the mass-radius
relationship, atmospheric properties, and/or the Love num-
ber (the value that describes the sensitivity of deformation of
a body in response to a tidal force), could indicate the
properties of the planet-forming region (e.g., Batygin et al.,
2009; Nettelmann et al., 2010, 2011). If the atmospheric
composition indicates a C/O ratio significantly different
from the host star’s, it may have formed beyond the snow
line (Öberg et al., 2011). Abundance ratios of certain ele-
ments may also reflect the composition of accreted plane-
tesimals (Pinhas et al., 2016).

Due to the inherently complex nature of planet forma-
tion, however, at this point it is difficult to infer detailed
characteristics of the disk from giant envelopes alone. Any
further connection to the habitability of terrestrial planets
will depend heavily on the robustness of formation and
geophysical models (see, e.g., Lenardic and Crowley, 2012;
Mordasini et al., 2012; Leconte et al., 2015; Stamenković
and Seager, 2016). However, future development in planet
formation and evolution theories may find more direct
connections with habitability. Conversely, future charac-
terization of terrestrial planets could provide insights into
the formation and evolution pathways of the individual
systems, giving useful constraints for the formation models.

6. Prospects Beyond 2030

In this section, we explore the possibilities beyond 2030
to further advance our investigations of potentially habitable
planets. Section 6.1 is devoted to the introduction of the
mission concepts currently being studied at NASA, and
Section 6.2 includes other ideas that the community has
been discussing for far-future projects.

6.1. Mission concepts currently being studied
in the United States

Given the ongoing progress of exoplanet science and
the further momentum for the field the near-future missions
will provide, there is reason for optimism that an exoplanet
mission capable of biosignature detection will be selected
for development in the 2020s. In anticipation of the 2020
Decadal Survey, NASA is supporting two community-led
mission studies that explore a range of science capabilities,
costs, and mission architecture for direct imaging of habit-
able planets: HabEx and LUVOIR. HabEx would provide
some general astrophysics capabilities, while the LUVOIR
mission would give equal weight to exoplanet imaging and
general astrophysics in its design. A third mission study,
OST, is considering mid-IR detection of biosignatures in
transit spectra post-JWST. All three studies are in the early
stages of their mission concept definition, with many aspects
still under discussion and subject to engineering trade studies.
Final architecture reports will be delivered in early 2019.

6.1.1. Habitable Exoplanet Imaging Mission (HabEx).
The HabEx study aims to take the first steps in the search for
habitability and biosignatures. It is considering ‘‘smaller’’
telescopes with diameters in the 4–6.5 m size range, un-
obscured telescope apertures, and some combination of
coronagraphs and starshade (or starshades). HabEx would
be able to search the HZs of up to 40 nearby solar-type stars.
For a conservative g� of 10%, HabEx would find a handful
of terrestrial planets for spectroscopic follow-up at wave-
lengths mostly below 1 mm. Especially at the 4 m aperture
size, spectroscopy of these at R~140 would require weeks of
integration time per target, and rotational brightness mod-
ulation would be difficult to detect with fidelity. HabEx
could provide a substantial science return for comparative
planetology, with sub-Neptune-sized planets accessible
around roughly a hundred to several hundred nearby stars
and jovian planets around roughly a thousand. HabEx would
carry one general astrophysics instrument, provisionally
planned as a UV spectrograph. The HabEx engineering
design work is led by NASA’s Jet Propulsion Laboratory.

6.1.2. Large UltraViolet Optical and InfraRed surveyor
(LUVOIR). The LUVOIR study has the greater ambition to
survey a large sample of nearby star HZs in order to con-
strain the frequency of habitability and biosignatures.
LUVOIR is baselining larger telescopes with diameters in
the 9–15 m size range, providing access to 200–500 HZs and
a ‘‘conservative’’ yield of 20–50 terrestrial planets. Such
large target samples are difficult to survey with starshades;
thus, LUVOIR has baselined coronagraphs as its prime
starlight suppression architecture. The constraints of exist-
ing launch vehicles require that the mission’s large telescope
aperture be realized with a segmented primary mirror, for
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which coronagraphy is more technically challenging.
LUVOIR’s greater collecting area would allow spectra of
HZ exoplanets to be made in roughly a day of integration
time; the simulated observed data are shown by blue points
in Figure 6 (Robinson et al., 2011); a subsample of at least a
dozen targets could have spectra measured into the near-IR
and have their rotational brightness modulation detected; the
comparative planetology would be even richer than in the
case of HabEx. Terrestrial planets at varying ages in varying
orbits will provide insights into how planets have formed
and how they evolve over geological time, including the
‘‘magma ocean’’ scenario (Hamano et al., 2015) and the
coevolution of life and the planetary environment (e.g.,
Kaltenegger et al., 2008).

In addition to its coronagraph, LUVOIR would carry four
other instruments for general astrophysics. LUVOIR is
studying whether the general astrophysics camera might be
calibrated well enough to provide sub-microarcsecond as-
trometry, which would enable detection of the stellar reflex
motion of HZ terrestrial planets and thus the determination
of their masses. The LUVOIR engineering design work is
led by NASA’s Goddard Space Flight Center.

6.1.3. Origins Space Telescope (OST). The OST study
(Meixner et al., 2016) will characterize the atmospheres of
nearby, transiting terrestrial exoplanets using the transmis-
sion and emission spectroscopy techniques. One of the
primary goals of the OST mission is to search for and detect
atmospheric biosignatures in multiple systems and assign
probabilities to their origins. Like LUVOIR, OST would be a
general astrophysics observatory but would operate at mid- and
far-IR wavelengths (6–600mm). It is currently baselined to
have a segmented primary mirror that is 9 m in diameter and
utilizes an off-axis design. It would carry up to five instru-
ments, one of which is being designed specifically to detect
biosignatures in exoplanet atmospheres (Matsuo et al., 2016).

In the mid-IR, the main observable is a planet’s dayside
emission spectrum, as measured using the secondary eclipse
technique. As discussed in Section 3.3, between 8 and 30mm
where the SNR is favorable, there are prominent absorption
features due to CH4, CO2, O3, NH3, N2O, and SO2, as well
as the H2O vapor continuum. These features can distinguish
a wet Earth-like planet from a dry, Venus-like planet with a

dense CO2 atmosphere and a Mars-like planet with a thin CO2

atmosphere (Fig. 10). The strong O3 band at 9.7 mm allows
for the inference of O2, which is a powerful biosignature
when combined with other out-of-equilibrium molecular
species (such as CH4 at 7.7mm). Additionally, emission
spectroscopy uniquely probes a planet’s thermal structure,
which is critical toward assessing its habitability.

In addition to measuring planetary emission, mid-IR ob-
servations can take full advantage of a planet’s transmission
spectrum as measured during primary transit (Section 3.2).
transmission observations place additional atmospheric
constraints on the above-mentioned molecules at the plan-
et’s terminator. Furthermore, mid-IR transmission spectra
are less affected by the high-altitude aerosols that tend to
obscure spectral features at shorter wavelengths (e.g., Hu
et al., 2013; Arney et al., 2016).

6.2. Ideas for the far future

Here we mention some of the more visionary ideas for the
far-future missions found in the literature that could further
advance our investigations of Earth-sized exoplanets in the
search for life. The concepts introduced here are not around the
corner in terms of technological development and funding, and
these challenges will not be discussed in detail in this paper.

6.2.1. Direct imaging in the mid-IR. The idea of building a
space-based interferometric direct-imaging observatory in the
mid-IR for Earth-sized exoplanets was studied in proposed
mission concepts such as the ESA-led Darwin (Léger et al.,
1996; Fridlund, 2000) and the NASA-led TPF-I (Beichman
et al., 1999; Lawson et al., 2007), but currently they are not
actively studied. While a less challenging contrast of 10-7 is
needed to study habitable exoplanets around solar-type stars in
the mid-IR, going to wavelengths 10–15 times longer than the
visible requires telescopes 10–15 times larger (Eq. 9). For the
time being, the telescope dimensions required to study habit-
able exoplanets in the mid-IR (> 30 m) can only be realized as
interferometers: separate telescopes and a beam combiner
distributed on multiple spacecrafts flying in formation. This
complexity, combined with the mid-IR requirement to operate
at cryogenic temperatures, led the US community to give first
priority to architectures operating at visible wavelengths in
2011. Nevertheless, mid-IR high-contrast observations are

FIG. 10. Solid lines: Thermal emission
spectra of Earth, Venus, and Mars. The Earth
spectrum is from Robinson et al. (2011). The
spectra of Venus and Mars were modeled
using the radiative transfer code SMART,
assuming the 1D atmospheric profiles of each
planet. Venus data is from Giada Arney, and
Mars data is from Robinson and Crisp (2018).
Dashed lines: Blackbody emission from a
planet of the same radius with the approxi-
mately maximum brightness temperature of
each planet in this range. See also Selsis et al.
(2008) and Kaltenegger (2017).
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desirable for characterizing thermal profiles and searching for
certain atmospheric molecules of Earth-like planets around
solar-type stars, which will be difficult with the near-future
instruments. As discussed, signatures in the mid-IR range in-
clude various potential biosignatures (e.g., O3, CH4). Thermal
emission spectra may also be used to estimate the planetary
radius (Des Marais et al., 2002), which otherwise remains
unobservable unless it transits. Furthermore, the time variation
of thermal emission is affected by planetary obliquity (Gaidos
and Williams, 2004; Gómez-Leal et al., 2012; Cowan et al.,
2013) as well as thermal inertia (Cowan et al., 2012) and thus
may be used to make inferences for these parameters.

6.2.2. ExoEarth Mapper. Ultimately, we would want a
planet imager that has extremely high angular resolution,
high enough to spatially resolve the exoplanetary surface
(Enduring Quests, Daring Visions [NASA, December
2013], https://science.nasa.gov/astrophysics/documents). An
interferometer in the visible that directly produces, for ex-
ample, a 10 · 10 pixel map of the surface of an exoplanet,
would provide critical, rich information regarding the plan-
etary surface environment. The surface albedo heterogeneity
would be directly observed, disclosing the distribution of
patchy cloud cover, oceans, and continents. The spatial pat-
tern of clouds would also reveal the atmospheric circulation
and possibly imply the underlying topography (e.g., moun-
tains). On compiling a time series, one could also measure the
rotation rate and the obliquity of the planet, and the season-
ality of surface features. We may even search for the spatial
distributions of biological surface signatures such as vegeta-
tion’s red edge and pigments, and their correlation with the
distribution of habitats would enhance our confidence level
that the detected signatures are indeed biotic. To spatially
resolve the disk of an Earth analogue at 10 pc distance, at the
visible wavelengths, would require an interferometer with
baselines of several hundred kilometers.

6.2.3. Telescope on the Moon. Like a free-flying space
telescope, a telescope on the Moon (e.g., Burns and
Mendell, 1988) shares the advantage of being outside
Earth’s atmosphere and having longer-duration access to
its targets. The rigid ground of the lunar surface may make
the construction of large telescopes and interferometers
easier. However, this potential advantage is offset by the
disadvantages of large day-night temperature swings, the
*330 h lunar night, and contamination of optical elements
by lunar dust. Still, the lunar far side remains the best site
for a low-frequency radio telescope, as it is isolated from
terrestrial radio interference.

6.2.4. One-hundred-meter-class ground-based telescope.
The idea of 100 m class ground-based telescopes was once
discussed at the European Southern Observatory (Dierickx
and Gilmozzi, 2000). The concept for a 74 m telescope
named the Colossus telescope has been proposed (Kuhn
et al., 2014). It would likely be two or three decades before
ground telescopes larger than ELTs will be pursued.

7. Summary: Ideal Timeline

This paper has explored the prospects of future observa-
tions to contribute to the general characterization of terres-

trial planets in the HZs and to search for biosignatures. Here
we summarize them in a serial timeline, for which different
aspects are covered in Tables 1 and 2.

Characterization of HZ terrestrial planets in the coming
decade will feature transiting planets around late-type (M-type)
stars. TESS will soon play the primary role in surveying transit
signals of nearby short-orbit planets, including Earth-sized
planets in HZs of late-type stars. CHEOPS will then provide
measurements of radii down to sub-Neptune size with its ultra-
high photometric precision. These planetary systems around
nearby late-type stars will allow for RV mass measurements by
ground-based high-resolution spectrographs. The set of well-
characterized planets in terms of radius and mass will advance
the study of the mass-radius relationship of the close-in small
planets. Meanwhile, the host stars and the planetary system ar-
chitecture will be better characterized.

A small number of the discovered transiting potentially
habitable planets around nearby late-type stars may be fol-
lowed up by observations with JWST, if the noise floor is
smaller than the expected atmospheric signals. An intensive
use of the telescope for a few golden targets will assess
whether such planets have atmospheres at all. If atmospheres
and signs of habitability are found, a more thorough search
for biosignatures may be conducted through transit spectro-
scopy with the intensive use of JWST or ground-based tele-
scopes. The largest existing ground-based telescope might
perhaps access the most nearby targets, upgrading high-re-
solution spectrographs and high-contrast imaging instruments.

ELTs (GMT, ELT, TMT) will start operation in the 2020s,
and all of these telescopes are contemplating the instruments
for characterization of template terrestrial planets using high-
resolution transmission spectroscopy, high-contrast imaging,
and the high-resolution high-contrast method. Once such in-
struments are installed, they will offer invaluable opportunities
to detect atmospheric signatures of HZ planets around late-type
stars. This characterization of a handful of golden targets is
a tremendous near-term opportunity to not just search for
life but also test theories, in particular those about the loss
and replenishment of atmospheres around terrestrial planets.

Investigation of potentially habitable planets around solar-
type (F-, G-, and K-type) stars will be facilitated from the mid-
2020s. Around the mid-2020s, HZ terrestrial transiting planets
around these stars will be surveyed by PLATO. Together with
mass measurements from the ground or the TTV method, the
mass-radius relationship for these relatively distant planets will
be derived; this will provide critical prior knowledge for future
directly imaged planets. With luck, one or two targets may
overlap with the nearby targets of future space-based direct-
imaging missions.

WFIRST offers the first possibility to spectrally charac-
terize these HZ planets around solar-type stars. If WFIRST
is coupled with an external occulter (starshade) to suffi-
ciently block the stellar light to the contrast level 10-10, it
may be able to directly image Earth-sized planets in HZs of
solar-type stars and take low-resolution spectra for crude
characterization of their atmospheres. Without an external
occulter, WFIRST will work with a coronagraph instrument
that is expected to operate at contrast limits of about 2 · 10-9

at 130 mas separations, enabling for the detection of larger
planets, which potentially include terrestrial ones.

There are three options being considered for advancing our
search for biosignatures, beyond the initial search that will be
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conducted over the next *10 years. The first option is to in-
vestigate the same (and similar) targets as observed by JWST
and/or ELTs (i.e., those around late-type stars) with the higher
sensitivity (compared to JWST) and expanded wavelength
coverage (compared to ELT’s) provided by OST. The second
option, HabEx, will target biosignatures on planets orbiting
nearby solar-type stars with scattered light spectroscopy, while
also enabling follow-up transit spectroscopy of the JWST/
ELTs targets in the UV to visible wavelengths. The third op-
tion, LUVOIR, would conduct a survey of biosignatures for
planets around hundreds of stars via scattered light spectro-
scopy of those around solar-type stars as well as detailed fol-
low-up of JWST/ELTs targets with transit spectroscopy in the
UV to visible wavelengths. These options will allow our
community to be responsive to the scientific and technological
developments of the next few years. Which option we pursue
will be decided by the next US Astrophysics Decadal Survey.

As argued throughout this paper and other papers in this series,
finding inhabited planets will not end with the detection of a
single feature of a biosignature candidate (or candidates). False-
positive scenarios must be examined and ruled out based on the
environmental context before claims of extraterrestrial life are
made. Additional evidence implying habitable conditions will
enhance our confidence level for the biological origin of the
biosignature candidate. Ultimately, identifying inhabited planets
will be the result of successive efforts that accumulate the evi-
dence of the planetary environment, until one finds a set of
signatures that cannot be explained by any known abiotic pro-
cesses and can be reasonably explained by evoking the presence
of a biosphere. Such efforts should rely on comprehensive
characterization of individual planets and the planetary system
properties provided by different observations surveyed in this
paper, accompanied with the theoretical models of possible va-
rieties in HZ terrestrial planets, both those with life and those
without life.

In this paper, we also discussed the known difficulties in
observationally obtaining some of the key parameters to
evaluate habitability. Given the limited quality and quantity of
the data available in the future, retrievals of the planetary
properties will easily suffer from degeneracies that lead to
inconclusive or biased interpretations. Thus, developing data
analysis techniques and the framework to properly decode
available data are essential. It is also important to further
explore the methods of characterization, which would corre-
spond to expanding Table 2 and filling in the blanks. Multiple
novel ideas were presented in the past decade as reviewed in
this paper, and more ideas may be expected to come.

The detection of life across light-year distances will
perhaps be one of the most difficult measurements ever
made, but powerful instruments and careful inquiry should
indeed make it possible within the next few decades. No
doubt the future will contain hurdles and discoveries that we
cannot predict here. We hope, however, that this work will
provide a guiding light to steer the way.
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López, C., Sarmiento, L.F., Strachan, J.P., Tsapras, Y.,
Tuomi, M., and Zechmeister, M. (2016) A terrestrial planet
candidate in a temperate orbit around Proxima Centauri.
Nature 536:437–440.

Armstrong, J.C., Barnes, R., Domagal-Goldman, S., Breiner, J.,
Quinn, T.R., and Meadows, V.S. (2014) Effects of extreme
obliquity variations on the habitability of exoplanets. Astro-
biology 14:277–291.

Arney, G., Domagal-Goldman, S.D., Meadows, V.S., Wolf,
E.T., Schwieterman, E., Charnay, B., Claire, M., Hébrard,
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Artigau, E., Bouchy, F., Boisse, I., Brun, A.S., Hennebelle,
P., Widemann, T., Bouvier, J., Bonfils, X., Morin, J., Moutou,
C., Pepe, F., Udry, S., do Nascimento, J.D., Alencar, S.H.P.,
Castilho, B.V., Martioli, E., Wang, S.Y., Figueira, P., Santos,
N.C., and the SPIRou Science Team. (2013) World-leading
science with SPIRou—the nIR spectropolarimeter/high-
precision velocimeter for CFHT. Proceedings of the Annual
meeting of the French Society of Astronomy and Astro-
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Quinn, S.N., Latham, D., Torres, G., Buchhave, L.A., Marcy,
G.W., Fortney, J.J., Shporer, A., Ford, E.B., Lissauer, J.J.,
Ragozzine, D., Rucker, M., Batalha, N., Jenkins, J.M., Bor-
ucki, W.J., Koch, D., Middour, C.K., Hall, J.R., McCauliff,
S., Fanelli, M.N., Quintana, E.V., Holman, M.J., Caldwell,
D.A., Still, M., Stefanik, R.P., Brown, W.R., Esquerdo, G.A.,
Tang, S., Furesz, G., Geary, J.C., Berlind, P., Calkins, M.L.,
Short, D.R., Steffen, J.H., Sasselov, D., Dunham, E.W., Co-
chran, W.D., Boss, A., Haas, M.R., Buzasi, D., and Fischer,
D. (2011) Kepler-16: a transiting circumbinary planet. Sci-
ence 333:1602–1606.

Dressing, C.D. and Charbonneau, D. (2013) The occurrence rate
of small planets around small stars. Astrophys J 767, doi:
10.1088/0004-637X/767/1/95.

Dressing, C.D. and Charbonneau, D. (2015) The occurrence of
potentially habitable planets orbiting M dwarfs estimated
from the full Kepler dataset and an empirical measurement of
the detection sensitivity. Astrophys J 807, doi:10.1088/0004-
637X/807/1/45.

Dumusque, X., Udry, S., Lovis, C., Santos, N.C., and Monteiro,
M.J.P.F.G. (2011a) Planetary detection limits taking into ac-
count stellar noise. I. Observational strategies to reduce stellar
oscillation and granulation effects. Astron Astrophys 525:A140.

Dumusque, X., Santos, N.C., Udry, S., Lovis, C., and Bonfils,
X. (2011b) Planetary detection limits taking into account
stellar noise. II. Effect of stellar spot groups on radial-
velocities. Astron Astrophys 527:A82.

Ehrenreich, D., Bourrier, V., Wheatley, P.J., Lecavelier des
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Berdinas, Z.M., Brinkmöller, M., Cardenas, M.C., Casal, E.,
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M., López-Puertas, M., López-Santiago, J., Lopez Salas, J.F.,
Magan Madinabeitia, H., Mall, U., Mandel, H., Mancini, L.,
Marin Molina, J.A., Maroto Fernández, D., Martı́n, E.L.,
Martı́n-Ruiz, S., Marvin, C., Mathar, R.J., Mirabet, E.,
Montes, D., Morales, J.C., Morales Muñoz, R., Nagel, E.,
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Abbreviations Used

ARIEL¼Atmospheric Remote-sensing Infrared
Exoplanet Large-survey

CGI¼WFIRST coronagraph instrument
CHEOPS¼CHaracterising ExOPlanet Satellite
CRIRES¼Cryogenic Infrared Echelle Spectrograph

ELT¼European-Extremely Large Telescope
ELTs¼Extremely Large Telescopes

ESPRESSO¼Echelle SPectrograph for Rocky Exoplanet
and Stable Spectroscopic Observations

FINESSE¼Fast Infrared Exoplanet Spectroscopy
Survey Explorer

GMT¼Giant Magellan Telescope
HabEx¼Habitable Exoplanet Imaging Mission

HARPS¼High Accuracy Radial velocity Planet
Searcher

HST¼Hubble Space Telescope
HZs¼ habitable zones

IWA¼ inner working angle
JWST¼ James Webb Space Telescope

K2¼ the repurposed Kepler spacecraft

LUVOIR¼Large UltraViolet Optical and InfraRed
surveyor

MIRI¼Mid-Infrared Instrument
MRS¼medium-resolution spectrograph

NIRCam¼Near-Infrared Camera
NIRISS¼Near-Infrared Imager and Slitless

Spectrograph
NIRSpec¼Near-Infrared Spectrograph

OST¼Origins Space Telescope

PLATO¼ PLAnetary Transits and Oscillations of stars

RV¼ radial velocity

SED¼ spectral energy distribution

SNR¼ signal-to-noise ratio

TESS¼Transiting Exoplanet Survey Satellite

TMT¼Thirty-Meter Telescope

TPF¼Terrestrial Planet Finder

TTV¼ transit timing variation

VLT¼Very Large Telescope

WFIRST¼Wide Field InfraRed Survey Telescope
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