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The fixation probability, the probability that the frequency of a particular allele in a
population will ultimately reach unity, is one of the cornerstones of population genetics. In
this review, we give a brief historical overview of mathematical approaches used to estimate
the fixation probability of beneficial alleles. We then focus on more recent work that has
relaxed some of the key assumptions in these early papers, providing estimates that have
wider applicability to both natural and laboratory settings. In the final section, we address
the possibility of future work that might bridge the gap between theoretical results to date
and results that might realistically be applied to the experimental evolution of microbial
populations. Our aim is to highlight the concrete, testable predictions that have arisen from
the theoretical literature, with the intention of further motivating the invaluable interplay
between theory and experiment.
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1. INTRODUCTION

Mathematical population genetics is a field with an
extremely rich historical literature. The first questions
about gene frequency distributions were posed in
analytical form by Fisher; independent studies were
conducted by Wright and Haldane. Fisher, Haldane
andWright together shaped the foundations of the field
and are referred to as the ‘great trinity’ (Crow 1994) of
population genetics. The works of these authors (Fisher
1922, 1930; Haldane 1927; Wright 1931) are now consi-
dered to be the classic papers in the field.

One of the central ideas addressed by these authors is
the fixation probability: the probability that the
frequency of a particular allele in a population will
ultimately reach 100 per cent. Mathematically, there are
several approaches to computing fixation probabilities,
and interest in this problem has been sustained for
almost a century: the first papers were written in the
early 1920s, and there have been important advances in
every decade since. Empirically, the fixation probability
is necessary in order to estimate the rate at which a
population might adapt to a changing environment, the
rate of loss of genetic diversity or the rate of emergence of
drug resistance.

The last several years have seen two key advances in
this field. First, a number of important, and fascinating,
theoretical advances have been made, each bringing us
one step closer to theoretical predictions that might
pertain in a ‘real’ laboratory population. Second, in
orrespondence (lwahl@uwo.ca).
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parallel with this effort, experimental techniques in
microbial evolution have advanced to the point where
the fate of a novel mutant strain within a controlled
population can be followed over many generations.
Thus, these experiments are on the verge of being
able to test our theoretical predictions of the fixation
probability—predictions that have in many cases stood
untested for 80 or 90 years. This is extremely exciting.

Although neutral and deleterious mutations may
also reach fixation in finite populations, in the following
review we will restrict our attention to beneficial
mutations. The selective advantage, s, of a beneficial
mutation is typically defined for haploids as follows: if
each wild-type individual has on average W offspring
per generation, each mutant individual has on average
W(1Cs) offspring. Throughout this review we will
assume that this definition of s holds, unless stated
otherwise. For simplicity, for diploid individuals we will
use s to denote the advantage of the heterozygote,
although the notation hs is also typically used.

In a deterministic model, an initially rare beneficial
mutation will increase in frequency in each generation,
and fixation is certain. In reality, however, the
frequency of any particular lineage fluctuates over
time. These fluctuations, ‘genetic drift’, are very likely
to cause the extinction of a beneficial lineage when its
frequency is low, and require a stochastic treatment.
Once the frequency of the mutant is sufficiently large,
further increases are well approximated by a determi-
nistic model. Estimating the fixation probability for a
beneficial mutation is thus usually equivalent to
estimating the probability that the mutation survives
genetic drift when initially rare.
J. R. Soc. Interface (2008) 5, 1279–1289
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The underlying distribution of s, i.e. the distribution
of selective effects for all possible beneficial mutations,
is a topic of current interest, both theoretically and
experimentally. Although beyond the scope of this
review, we refer the interested reader to several recent
papers (Rozen et al. 2002; Orr 2003; Rokyta et al. 2005;
Kassen & Bataillon 2006). A closely related, or even
overlapping, issue is adaptation: the rate of fitness
increase or overall rate at which beneficial mutations
arise and become fixed. While fixation probabilities are
essential building blocks in the models of adaptation,
such models also require further assumptions, such as
an underlying distribution of selective effects or a model
for combining the effects of multiple mutations.
Estimating the rate of adaptation has a rich literature
in its own right, and again we refer the interested reader
to a few key references (Orr 1994, 2000; Wilke 2004;
Desai & Fisher 2007; Goncalves et al. 2007). We touch
on this issue again in §5.3.
2. HISTORICAL OVERVIEW

Broadly speaking, there are three approaches to
computing fixation probabilities. When the state space
of a population (exactly how many individuals have
exactly which genotype) can be enumerated, a Markov
chain approach can determine the fixation probability
exactly. This approach is nicely outlined for the non-
specialist reader by Gale (1990), and is typically feasible
only when the population size is quite small (but see
Parsons & Quince 2007a,b, discussed in §3.3). When the
population size is large, methods based on discrete
branching processes are often used. These methods
build on the ‘Haldane–Fisher’ model (Fisher 1922, 1930;
Haldane 1927, 1932), which is itself based on a Galton–
Watson branching process. We note that any branching
process approach provides an approximation to the
true fixation probability, as it assumes that the wild-
type population is sufficiently large that the fate of each
mutant allele is independent of all others. This
approach has been widely, and successfully, applied to
a number of interesting recent questions regarding the
fixation probability (Athreya 1992; Haccou & Iwasa
1996; Lange & Fan 1997; Otto & Whitlock 1997;
Wahl & Gerrish 2001; Johnson & Gerrish 2002; De
Oliveira & Campos 2004; Wahl & DeHaan 2004;
Champagnat & Lambert 2007). Finally, when the
population is large and the change in gene frequency is
small in each generation (i.e. selection is weak), methods
that incorporate a diffusion approximation may be used.
These approaches follow from the pioneering ‘Wright–
Fisher–Kimura’ model (Fisher 1922, 1930; Wright 1931,
1945; Kimura 1957, 1962), and are also in wide use today
(Yamazaki 1977; Wahl & Gerrish 2001; Gavrilets &
Gibson 2002; Whitlock 2003). Significant effort has also
been made towards unifying or reconciling the discrete
and continuous approaches (Kimura & Ohta 1970;
Otto & Whitlock 1997; Wahl & Gerrish 2001; Lambert
2006). We will discuss many of these recent papers in
turn in the sections to follow.

The most widely known result regarding the fixation
probability is Haldane’s celebrated approximation,
obtained for weak selection using a discrete-time
J. R. Soc. Interface (2008)
branching process. Haldane (1927) demonstrated that
the probability of ultimate fixation, p, of an advan-
tageous allele is given by pz2s, when the allele is
initially present as a single copy in a large population.

Haldane’s elegant result necessarily relies on a
number of simplifying assumptions. The population
size is large and constant, generations are discrete and
the number of offspring that each individual contrib-
utes to the next generation is Poisson distributed. This
last simplification masks an assumption on which the
fixation probability critically depends: individuals in
such a branching process cannot die before having
offspring. In effect, individuals die in such models only
by having zero offspring. But since the probability of
having zero offspring is completely determined by the
mean of the Poisson distribution, there is no room in
Haldane’s approach to independently specify a survival
probability. This will become important as we review
some recent work that relaxes this assumption.

This work by Haldane, as well as Wright (1931) and
Fisher (1992), was later generalized in a number of
different directions, most notably by Kimura (Kimura
1957, 1962, 1964, 1970; Kimura &Ohta 1970). Kimura’s
approach was to use a diffusion approximation to model
small changes, over many generations, in the frequency
of a particular allele. To understand Kimura’s founda-
tional result, we must briefly introduce Ne, the variance
effective population size. If we imagine a diploid
population in which, for example, mating is not random
or the sex ratio is not 1 : 1, these effects may change the
variance in the number of offspring alleles per parental
allele. Ne is then the size of an ‘ideal’ population—a
large population of constant size, in which mating is
random and we have equal numbers of males and
females—that would give the same variance as the real
population in question. Kimura’s most widely known
result is that the probability of ultimate fixation, p, of
an allele with an initial frequency p and an additive
selective effect s is

pz
1KeK4spNe

1KeK4sNe
: ð2:1Þ

(Moran (1960) and Gillespie (1974), among others,
obtain the same expression.)

For large diploid populations, equation (2.1) implies
that the fixation probability for a new mutation that
arises as a single copy decreases with larger effective
population sizes. However, the decay of this function is
extremely rapid; for example, for sZ0.01, a population
size of 100 is already sufficient that the denominator is
approximately 1. For all but extremely small popu-
lations or nearly neutral mutations, we then find that
pz2sNe/N for a mutation occurring as a single copy.
Thus, p depends on the ratio of effective population size
to census size. It is also clear that whenNeZN, we obtain
Haldane’s approximation pz2s for weak selection
(Haldane 1927). By contrast, the fixation probability
for an allele that is present at a given frequency increases
with population size. (Note, however, that a single
copy of an allele corresponds to a smaller frequency
in a larger population, and thus pz2s still holds.)

A final note on the approximation pz2sNe/N is
that s reflects the selective advantage of the beneficial
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allele, while Ne is most often inversely proportional to
the variance in offspring number. This foreshadows the
important work of Gillespie (1974, 1975) who predicted
that the ratio of the mean to the variance in offspring
number is necessary in determining both the long-term
effects of selection on a beneficial allele and the fixation
probability. This idea, particularly as applied to long-
term selective effects, has been expanded in a number of
elegant recent papers (Proulx 2000; Lande 2007; Orr
2007; Shpak & Proulx 2007).

Much progress has been made since the work of
Kimura and the great trinity. As we will review in the
following sections, the fixation probability has now
been estimated in populations of fluctuating size, for
populations whose size cycles among a set of constant
values and, more recently, fluctuates according to a
density-dependent birth–death process. Populations
experiencing exponential or logistic growth or decline
have been treated, as have populations that are subject
to sustained growth periods followed by a population
bottleneck—a sudden reduction in population size. A
large body of work treats populations subdivided
into demes, most recently including heterogeneous
selection among demes and asymmetrical migration.
Recent work has also addressed multiple segregating
alleles, specifically treating quasi-species interactions
and clonal interference, as described in the sections
to follow.
3. POPULATIONS OF CHANGING SIZE

3.1. Growing, declining or cyclic population
sizes

Fisher (1930) suggested that the probability of fixation
of beneficial alleles would increase in growing popu-
lations and decrease in declining populations. Analysis
by Kojima & Kelleher (1962) confirmed Fisher’s prop-
osition. Fisher’s claim was further justified through the
theoretical studies of logistically changing populations
by Kimura & Ohta (1974).

Ewens (1967) used a discrete multitype branching
process to study the survival probability of new
mutants in a population that assumes a cyclic sequence
of population sizes, as well as a population that initially
increases in size and thereafter remains constant. For
the former case, Ewens found the probability of fixation
of a beneficial mutation to be

pZ
2s ~N
�N

; ð3:1Þ

where ~N is the harmonic mean and �N is the arithmetic
mean of the population sizes in the cycle. Ewens found
that when the population sizes during the cycle differ
considerably, the value of p may be considerably less
than 2s, implying that a constant population size is
favourable for the survival of new mutants.

Ewens’ relaxation of the assumption of constant
population size was an important step towards gene-
ralizing fixation probability models; however, he still
maintained the other classic assumptions and only
explored two cases of changing population sizes. The
approximation in equation (3.1) led Kimura (1970)
J. R. Soc. Interface (2008)
to a conjecture that equation (2.1) may be used for
populations that assume a cyclic sequence of values,
with Ne replaced by ~N . Otto & Whitlock (1997) later
built on the work of Ewens and Kimura by addressing
the question of the fixation probability of beneficial
mutations in populations modelled by exponential and
logistic growth or decline. These authors proved that
the conjecture made by Kimura holds true for the
populations in which the product ks is small, where k is
the total number of discrete population sizes.

All the papers mentioned above assume a Poisson
distribution of offspring. Although such a distribution
may be a good model of reproductive success in many
species, some species clearly cannot be modelled well by
such a distribution (e.g. bacteria that reproduce by
binary fission). Pollak (2000) studied the fixation
probability of beneficial mutations in a population
that changes cyclically in size, assuming a very general
distribution of successful gametes, described by a mean
and variance, which are functions of the population
size. Assuming that a beneficial mutation first appears
in a single heterozygous individual, and that such
an individual has 1Cs times as many offspring as the
wild-type, Pollak proved that the result found for
the Poisson-distributed offspring by Ewens (1967) and
Otto & Whitlock (1997) still holds: that the fixation
probability is approximately proportional to the
harmonic mean of the effective population sizes in
the cycle and inversely proportional to the population
size when the mutation manifests.
3.2. Population bottlenecks

In an attempt to provide estimates of the fixation
probability for microbial populations maintained in
experimental evolution protocols, Wahl and Gerrish
studied the effect of population bottlenecks on fixation.
A population bottleneck is a sudden, severe reduction
in population size. In experimental evolution, bottle-
necks are an inherent feature of the protocol (Lenski
et al. 1991; Lenski & Travisano 1994; Bull et al. 1997);
the population typically grows for a fixed period of
time, and then is sampled randomly such that it is
reduced to its initial size. The repetition of this
procedure is called ‘serial passaging’.

An important point to note is that at the population
bottleneck, each individual—mutant or wild-type—
survives with the same probability. Thus the ‘offspring’
distribution of each individual at the bottleneck is the
same, for either mutant or wild-type. By contrast,
during growth the selective advantage of the mutant is
realized. Thus the case of growth between population
bottlenecks is not simply a special case of cyclic
population sizes.

Wahl & Gerrish (2001) derived the probability that
a beneficial mutation is lost due to population bottle-
necks. For this derivation they used both a branching
process approach (Haldane 1927; Fisher 1930) as well
as a diffusion approximation (Wright 1945; Kimura
1957, 1962). When selection is weak, Wahl and Gerrish
demonstrated that the two approaches yield the same
approximation for the extinction probability X of a
beneficial mutation that occurs at time t between
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bottlenecks: 1KXz2srtt eKrt. Here s is the selective
advantage of the mutant over the wild-type strain, r is
the Malthusian growth rate of the wild-type population
and t is the time at which a bottleneck is applied. It was
thus found that the fixation probability, p, drops
rapidly as t increases, implying that mutations that
occur late in the growth phase are unlikely to survive
population bottlenecks. Since this model treats only
extinction due to bottlenecks, this effect is not due to
the large wild-type population size late in the growth
phase, but rather due to the fact that the beneficial
mutant does not have sufficient time to found a lineage
large enough to survive the bottleneck. Wahl and
Gerrish also defined an effective population size given
by NezN0rt, where Ne is the effective population size
and N0 is the population size at the beginning of each
growth phase. This approximation is independent of
the time of occurrence of the mutation as well as its
selective advantage.

In 2002, this model was extended to include
resource-limited growth (Wahl et al. 2002). Resource
limitation was included in order to better model serial
passaging protocols for bacterial populations, in which
the growth phase is typically limited by a finite resource
in the growth medium. For both resource-limited and
time-limited growth, mutations occurring in the early
stages of a growth phase were more likely to survive.
Wahl et al. predicted that although most mutations
occur at the end of growth phases, mutations that are
ultimately successful occur fairly uniformly throughout
the growth phase.

The two papers described above included extinction
during bottlenecks, but did not include the effects of
genetic drift during the growth phase, i.e. the possi-
bility of extinction of an advantageous mutant lineage
between bottlenecks. Heffernan & Wahl (2002) incor-
porated the latter effect, assuming a Poisson distri-
bution of offspring during the growth phase, and using
a method based on the work of Ewens (1967). This
model predicted a greater than 25 per cent reduction in
the fixation probability for realistic experimental
protocols, compared with that predicted by Wahl &
Gerrish (2001).

The method presented by Heffernan is valid for both
large and small values of selective advantage, s. This
was an important extension of previous results,
especially given the recent reports of large selective
advantages in the experimental literature (Bull et al.
2000). When selection is weak and the mutation occurs
at the beginning of a growth phase, Heffernan and
Wahl derived the approximation pzs(kK1), where k
is the number of generations between bottlenecks. This
approximation is analogous to the classic result pz2s
(Haldane 1927) but is increased by a factor of (kK1)/2.

The work discussed in this section considers only the
loss of beneficial mutations due to bottlenecks and
genetic drift. In reality, rare beneficial mutations in
asexual populations may also be lost during the growth
phase due to competition between multiple new
beneficial alleles (see §5.3) or quasi-species interactions
(see §5.2). Most importantly, the papers described
above either assume deterministic growth between
bottlenecks or discrete generation times with offspring
J. R. Soc. Interface (2008)
numbers that are Poisson distributed. These are not
ideal simplifications for many microbial populations.
Thus, the tailored life-history models described in §6
should provide a more accurate approach to these
questions, although they have not, as yet, been as fully
developed as the papers described here.
3.3. Dynamically changing population sizes

Three intriguing papers addressing population sizes
that change dynamically, according to underlying birth
and death events, appeared in 2006 and 2007.

Lambert (2006) developed an extension of the Moran
(1958) model, assuming that birth events have a
constant per capita rate, while death events have a per
capita rate that increases with population density.
Lambert addressed three model constructions: the
first model considered independent continuous-state
branching processes; the second model considered
branching processes conditioned to produce a constant
population size; and finally the third model included
logistic density dependence through a density-dependent
death rate.

For the first and second models at a large population
limit, Lambert pointed out that the factor 2 in Haldane’s
result of pz2s for very small s stems from the
assumption that the offspring distribution is Poisson.
For near-critical branching processes, more generally,
pz2s/s, where s is the variance of the offspring
distribution (Haccou et al. 2005). Thus, increased
reproductive variance always reduces the fixation
probability in such models.

For the third model, density dependence results in
an upper asymptotic limit on the ‘invasibility coeffi-
cient’; that is, the rate at which the selective advantage
of the mutant increases the fixation probability.
Consequently, Lambert found that Haldane’s classic
approximation (pz2s) and Kimura’s diffusion approxi-
mation (equation (2.1)) tend to underestimate the
fixation probability of beneficial mutations in growing
populations and overestimate it in declining popu-
lations. This result is consistent with those of Parsons &
Quince (2007a,b), described below, as well as the classic
predictions of Fisher (1930), Kojima & Kelleher (1962)
and Kimura & Ohta (1974).

Ultimately, Lambert derived a concise expression for
the fixation probability, which holds for all three
models. The limitation of this approach is that it
holds only when the selective advantage of the bene-
ficial mutation is small, such that higher order terms in
s are negligible.

Parsons & Quince (2007a) introduced stochastic
population sizes in a similar way. In contrast to the
work of Lambert, Parsons and Quince considered
density-dependent birth rates and density-independent
death rates. Another key difference is that Parsons
and Quince did not assume that selection is weak. In
particular, they argued based on their results that the
parameter space over which the assumptions in Lambert
(2006) are valid may in fact be quite limited.

In the first case considered (the ‘non-neutral case’),
the carrying capacities of the mutant and wild-type
are not equal. For advantageous mutants, Parsons and
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Quince found that stochastic fluctuations in the wild-
type population do not affect the fixation probability. On
the other hand, for deleterious mutants, the fixation
probability is proportional to the fluctuation size of
the wild-type population, but relatively insensitive to
initial density.

In a second paper, Parsons & Quince (2007b) investi-
gated the ‘quasi-neutral’ case: the carrying capacities of
mutant and wild-type are identical, but the birth and
death rates are different. Since the carrying capacities
are determined by a ratio of the birth and death rates,
this implies a life-history trade-off between these
parameters. Parsons and Quince used a diffusion
approximation to determine the fixation probability
when the carrying capacity is large. The authors
predicted an increase in fixation probability for the
type with a higher birth rate in growing populations
and a reduction in a shrinking population. When the
population is at carrying capacity initially, the type
with a higher birth rate has larger fluctuations in
population size and thus a reduced fixation probability.

A shared feature of the approaches described in this
section is that beneficial mutations can affect more than
one life-history parameter or ‘demographic trait’. Both
models predict that the fixation probability depends on
this mechanism of the selective advantage. This work is
thus closely related to the more detailed life-history
models described in §6 to follow.
4. SUBDIVIDED POPULATIONS

Pollak (1966) was the first to address the question of
the fixation probability (p) in a subdivided population.
Pollak considered a situation in which K sub-
populations occupy their respective habitats, with the
possibility of migration between subpopulations. A
branching process approach was used to deduce that for
symmetric migration, p in a subdivided population is
the same as that in a non-subdivided population. Later,
for the case of symmetric migration, Maruyama (1970,
1974, 1977) used the Moran model with a diffusion
approach to show that a similar result holds.

Populations structured into discrete demes were also
studied by Lande (1979) and Slatkin (1981) among
others. Lande (1979) demonstrated the elegant result
that if a population is subdivided into demes, the net
rate of evolution is the same as the rate of evolution in a
single deme, where the rate of evolution is given by the
probability of fixation of a single mutant multiplied by
the number of mutations per generation in one deme.
This result relies on the assumption that a mutation
fixed in one deme can spread through the whole
population only by random extinction and colonization.
Slatkin (1981) then showed that for a given pressure of
selection in each local population, the fixation prob-
ability of a mutant allele is bounded below by the
appropriate fixation probability in an unstructured
population of the same total size and above by the
fixation probability obtained by assuming independent
fixation in each deme. Slatkin found that the fixation
probability is higher in the low-migration limit than in
the high-migration limit when a heterozygote mutant
has a fitness that is less than the arithmetic mean fitness
J. R. Soc. Interface (2008)
of the two homozygote states (underdominance). The
reverse was found to be true when the heterozygote was
more fit than the average homozygote fitness (over-
dominance). This stands to reason: high migration
increases the fixation probability in the overdominant
case and decreases the fixation probability in the
underdominant case.

Barton & Rouhani (1991) further investigated the
fixation probability in a subdivided population, explor-
ing the limiting case when migration is much larger
than selection, so that the difference in gene frequency
between adjacent demes is very small. In a model with
two demes, p was greatly reduced by migration in
this model. This observation, however, did not extend
to a large array of demes. Clarifying Slatkin’s predic-
tion that underdominance reduces the fixation prob-
ability, Barton and Rouhani showed that the chance
of fixation is considerable despite free gene flow and
moderate selection against heterozygotes, as long as
the neighbourhood is small and the homozygote has a
substantial advantage.

In contrast to Lande’s result, Barton and Rouhani
concluded that even though the fixation probability for
any one mutation may be very low, the overall rate of
fixation of any particular novel allele may be very high.
This is because mutations can arise in any of a very
large number of individuals; any mutation that is fixed
in a large enough area has high probability of spreading
through the entire population.

Like previous models, Barton and Rouhani assumed
that migration is symmetric. Relaxing this assumption,
Tachida & Iizuka (1991) considered asymmetric
migration under the condition of strong selection and
found that spatial subdivision increases p. This
observation was consistent with the numerical results
of Pollak (1972). However, the model by Tachida and
Iizuka considered only a two-patch population.
Lundy & Possingham (1998) extended the two-patch
models of previous authors to investigate p in three-
and four-patch systems. When migration is asym-
metric, Lundy and Possingham found that the influence
of a patch on the overall fixation probability depends
largely on two factors: the population size of the patch
and the net gene flow out of the patch.

More recently, Gavrilets & Gibson (2002) have
studied the fixation probabilities in a population that
experiences heterogeneous selection in distinct spatial
patches, and in which the total population size is
constant. In this model, each allele is advantageous in
one patch and deleterious in the other. The results in
this contribution are in agreement with the arguments
of Ohta (1972) and Eldredge (1995, 2003) that,
depending on exactly how migration rates change
with population size, selection can be more important
in small populations than large populations.

In a model of distinct patches, which focuses on
extinctions and recolonizations, Cherry (2003) found
that these two effects always reduce the fixation
probability of a beneficial allele. Cherry’s conclusion
is consistent with Barton’s (1993) observation for a
favoured allele in an infinite population, but appliesmore
generally. Cherry derived both an effective population
size and an effective selection coefficient, for beneficial
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alleles in this model, such that established results for
unstructured populations can be applied to structured
populations. In his exposition, Cherry (2004) assumed
that an extinct patch can be recolonized by only one
founding allele. The author goes on to explore the case of
more thanone founding allele after extinction, confirming
that extinction and recolonization reduce the fixation
probability for beneficial alleles.

Whitlock (2003) relaxed some of the assumptions in
previous structured population models to study the
fixation of alleles that confer either beneficial or deleter-
ious effects, with arbitrary dominance. Whitlock con-
structed a model that allows for an arbitrary distribution
of reproductive success among demes, although selection
is still homogeneous. He found that in a ‘differentially
productive environment’, the effective population size is
reduced relative to the census size and thus the
probability of fixation of deleterious alleles is enhanced,
while that of beneficial alleles is decreased. In a further
paper, Whitlock & Gomulkiewicz (2005) examined the
question offixation probability in ametapopulationwhen
selection is heterogeneous among demes. In contrast to
the metapopulations with homogeneous selection, Whit-
lock and Gomulkiewicz concluded that the heterogeneity
in selection never reduced (and sometimes substantially
enhanced) the fixation probability of a new allele. They
found that the probability of fixation is bounded below
and above by approximations based on high- and low-
migration limits, respectively.

An alternative realization of a spatially structured
model was studied by Gordo & Campos (2006) who
determined the rate of fixation of beneficial mutations
in a population inhabiting a two-dimensional lattice.
Under the assumption that deleterious mutations are
absent and that all beneficial mutations have equal
quantitative effect, Gordo and Campos found that the
imposition of spatial structure did not change the
fixation probability of a single, segregating beneficial
mutation, relative to an unstructured haploid popu-
lation (in agreement with the findings of Maruyama
1970). However, interestingly, spatial structure
reduced the substitution rate of beneficial mutations
if either deleterious mutations or clonal interference
(more than one beneficial mutation segregating simul-
taneously) were added to the model. In an elegant
example of experimental and theoretical interactions,
the conclusions of Gordo and Campos were experimen-
tally substantiated by Perfeito et al. (2008) who studied
bacterial adaptation in either unstructured (liquid) or
structured (solid) environments.

From the overview above, it is clear that an extremely
rich literature surrounding the fixation probability in
subdivided populations has been developed. In particu-
lar, Whitlock’s recent work has relaxed a large number
of the limiting assumptions in earlier papers, encom-
passing beneficial or deleterious mutations, arbitrary
dominance, heterogeneous selection and asymmetric
mutation. As argued by Whitlock & Golmulkiewicz
(2005), some intriguing questions remain. For example,
it seems likely that multiple alleles could be simul-
taneously segregating in different demes; this case has
not yet been treated in a subdivided population,
although it is related to §5 below.
J. R. Soc. Interface (2008)
5. MULTIPLE SEGREGATING ALLELES

In §4 above we have discussed the fixation probability in
populations that are spatially subdivided (i.e. spatially
heterogeneous populations). In analogy, here we
consider populations that are divided into a variety of
genetic rather than geographical backgrounds. This
genetic heterogeneity can occur when multiple alleles
are segregating simultaneously at the same locus or
when contributions from other linked loci are
considered. In general, the literature surrounding these
questions suggests numerous possibilities for new work.
5.1. Effects of linked and deleterious alleles

The effects of linked loci on the fixation probability of a
beneficial mutation have been extensively studied,
beginning with the ideas of Fisher (1922) and Hill &
Robertson (1966). Peck (1994), in particular, focused
on the fixation probability of a beneficial mutation in
the presence of linked deleterious mutations, finding
that deleterious mutations greatly reduce the fixation
probability in asexual, but not sexual, populations. A
more detailed model is presented by Charlesworth
(1994) who derived expected substitution rates and
fixation probabilities for beneficial alleles when the
deleterious alleles are at completely linked loci. A key
result of this work is that deleterious linked loci reduce
the effective population size, by a factor given by the
frequency of mutation-free gametes.

Barton (1994, 1995) derived a more comprehensive
method for computing the fixation probability of a
favourable allele in different genetic backgrounds. For a
single large heterogeneous population, Barton found
that loosely linked loci reduce fixation probability
through a reduction in the effective population size, by
a factor that depends on the additive genetic variance.
At tightly linked loci, however, Barton demonstrated
that deleterious mutations, substitutions and fluctuat-
ing polymorphisms each reduce the fixation probability
in a way that cannot be simply captured by an effective
population size.

The study of linked loci was extended by Johnson &
Barton (2002) who estimated the fixation probability of
a beneficial mutation in an asexual population of fixed
size, in which recurrent deleterious mutations occur at
a constant rate at linked loci. Johnson and Barton
assumed that each deleterious mutation reduces the
fitness of the carrier by a factor of (1Ksd) (i.e. any
deleterious mutation has the same quantitative effect
on fitness). Furthermore, it is assumed that the
beneficial mutation increases the fitness of an individual
carrier by a factor of (1Csb) regardless of the number
of deleterious mutations present in the carrier. Thus,
the relative fitness of an individual with a benefi-
cial mutation and i deleterious mutations is wiZ
(1Csb)(1Ksd)

i. Johnson and Barton estimated the
fixation probability by summing fiPi , where fi is
the probability that a beneficial mutation arises in an
individual with i deleterious mutations and Pi , given by
the solution of simultaneous equations, is the prob-
ability that a beneficial mutation arising in such an
individual is not ultimately lost. Johnson and Barton
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were thus able to quantify the reduction in the fixation
probability of a beneficial mutation due to interference
from segregating deleterious mutations at linked loci.
Interestingly, this result is then used to determine the
expected rate of increase in population fitness and the
mutation rate that maximizes this fitness increase.
5.2. Quasi-species fixation

Quasi-species theory describes the evolution of a very
large asexually reproducing population that has a high
mutation rate (Eigen & Schuster 1979; Eigen et al.
1988, 1989; Domingo et al. 2001). This theory is often
cited in describing the evolution of RNA viruses
(Domingo et al. 2001; Wilke 2003; Manrubia et al.
2005; Jain & Krug 2007). Several authors have
questioned the relevance of quasi-species theory to
viral evolution (Moya et al. 2000; Jenkins et al. 2001;
Holmes & Moya 2002), arguing that the mutation rates
necessary to sustain a quasi-species are unrealistically
high. In contrast, however, Wilke (2005) reviewed
related literature and argued that quasi-species theory
is the appropriate model for the population genetics of
many haploid, asexually reproducing organisms.

In typical models of population genetics, it is
assumed that mutations are rare events, such that an
invading mutant strain will not mutate again before
fixation or extinction occurs. In contrast, in quasi-
species models, the offspring of a mutated individual are
very likely to mutate before fixation. Consequently, the
fitness of an invading quasi-species is not solely
determined by the fitness of the initial/parent mutant,
but depends on the average fitness of the ‘cloud’ of
offspring mutants related to that parent, continually
introduced bymutation, and removed through selection
(the ‘mutation–selection balance’). In quasi-species
theory, therefore, the fixation of a mutant is defined to
be its establishment as a common ancestor of the whole
population; since the population is never genetically
identical, the standard definition does not apply.

Wilke (2003) first investigated the fixation prob-
ability of an advantageous mutant in a viral quasi-
species. This contribution uses multitype branching
processes to derive an expression for the fixation
probability in an arbitrary fitness landscape. Wilke
initially assumed that mutations that are capable of
forming a new invading quasi-species are rare. Thus,
while mutations within the quasi-species are abun-
dant, only one quasi-species will be segregating from
the wild-type quasi-species at any given time. Under
this assumption, the fixation probability was deter-
mined for fixation events that increase the average
fitness of the population (situations where the average
fitness is reduced or left unchanged were not
addressed). If pi denotes the probability of fixation
of sequence i, that is, the probability that the cascade
of offspring spawned by sequence i does not go extinct,
and Mij gives the expected number of offspring of
type j from sequences of type i in one generation,
Wilke demonstrated that the vector of fixation
probabilities p̂ satisfies p̂Z1KeKM p̂ (with the
J. R. Soc. Interface (2008)
convention ex̂Zðex 1 ; ex 2 ;.ÞT). This implies

pizsi C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2i C2

X
ksi

Mikpk

q
; ð5:1Þ

where siZMiiK1. In this model, if the invading sequ-
ence gets no support from its mutational neighbours
(i.e. the off-diagonal elements of matrixM are zero) and
siO0, then equation (5.1) reduces to Haldane’s cele-
brated result, piZ2si. If the off-diagonal elements of M
are non-zero, pi is increased even if some si!0, so long as
the spectral radius of M is greater than one.

As discussed more fully in §6, estimates of the
fixation probability are extremely sensitive to assump-
tions regarding the life history of the organism.
Wilke’s elegant result is a generalization of Haldane’s
approach, retaining the assumptions of discrete, non-
overlapping generations and Poisson-distributed
offspring. As these assumptions are not particularly
well suited for the life history of viruses, it remains
unclear which conclusions of this study would hold in
viral populations.
5.3. Clonal interference

In a genetically homogeneous asexual population, two
or more beneficial mutations may occur independently
in different individuals of the population. Clonal
interference refers to the competition that ensues
between the lineages of these independent mutations
thereby, potentially, altering the fate of the lineages.
The idea that competing beneficial mutations may
hinder a beneficial mutation’s progress to fixation was
formulated by Muller (1932, 1964) in his discussions on
the evolutionary advantage of sex. Since that time,
numerous studies have been conducted on the subject of
clonal interference; in the last decade a rich literature,
both experimentally and theoretically, has developed,
sparked by renewed interest in the adaptation of
asexual populations in laboratory settings.

A review of this growing literature would be
substantial, and is outside the scope of this contribution,
relating more closely to adaptation and adaptation rates
than to fixation and extinction probabilities, narrowly
defined. However, we give a brief overview of the
standard means of estimating fixation probabilities
under clonal interference, and refer the reader to other
recent contributions (Campos & de Oliveira 2004;
Campos et al. 2004, 2008; Rosas et al. 2005; De Visser &
Rozen 2006).

Gerrish & Lenski (1998) published the first discus-
sion of fixation probabilities under clonal interference.
Gerrish and Lenski considered the possibility that
while an initial beneficial mutation is not yet fixed, it
is possible for a set of other mutations to emerge in the
population. If at least some of these mutations survive
extinction when rare (for example, due to genetic drift),
a competition ensues between the focal mutation and
the subsequent mutations. Assuming that the prob-
ability density for the selective advantage of beneficial
mutations is given by aeKas, Gerrish and Lenski
stated that the probability the focal mutation fixes
will be a

ÐN
0 pðsÞexpðKlðsÞKasÞds. The function p(s)

gives the probability that a given beneficial mutation
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is not lost through drift when rare, while the function
l(s) gives the mean number of mutations that: occur
before the focal mutation fixes; have a higher s than the
focal mutation; and survive drift. We note that l(s) is
also a function of the population size, the mutation rate
and a. Under the assumption that mutations appear
spontaneously at a constant rate, eKl(s) then gives the
probability that zero superior mutations occur, and
survive drift, before the focal mutation fixes. This basic
structure for the fixation probability during clonal
interference has been augmented in subsequent contri-
butions (Campos & de Oliveira 2004; Campos et al.
2004). The most interesting prediction of this work is
that at high mutation rates, clonal interference imposes
a ‘speed limit’ on the rate of adaptation.

There is a small conceptual flaw in this derivation
(P. Gerrish 2000, personal communication), which is
that the possibility that other beneficial mutations were
segregating before the initial appearance of the focal
individual was neglected. If many mutations are
segregating simultaneously, the focal beneficial
mutation is likely to have arisen on the background of
a previously segregating beneficial mutation. Thus
mutations may sweep in groups, the ‘multiple
mutation’ regime. Conceptually, the multiple mutation
regime lies on a continuum between clonal interference
as described by Gerrish & Lenski (1998) and quasi-
species dynamics.

The dynamics of adaptation in the multiple mutation
regime have been recently described in some detail
(Desai & Fisher 2007; Desai et al. 2007). In contrast to
the work of Gerrish & Lenski (1998), these authors
predicted that clonal interference may not always reduce
adaptation rates. Like Gerrish and Lenski, this approach
depends on the underlying probability that a beneficial
mutation escapes extinction through drift when rare,
and assumes that this probability is proportional to s.
6. LIFE-HISTORY MODELS

In almost every contribution discussed so far, beneficial
mutations are assumed to increase the average number
of offspring: so-called ‘fecundity mutants’. For many
organisms, however, a mutant may have the same
average number of offspring as the wild-type, but may
produce these offspring in a shorter generation time:
‘generation time mutants’. An example here is bacterial
fission in the presence of antibiotics: many antibiotics
reduce cell growth and thus mutations conferring
resistance have a reduced generation time.

This issue was first addressed by Wahl & DeHaan
(2004) who approximated the fixation probability for
beneficial generation time mutants (pG), in a popu-
lation of constant size or a population that grows
between periodic bottlenecks. The approach is closely
related to that of Pollak (2000). In a model with the
Poisson offspring distribution with mean 2 and weak
selection, it was found that pGzs/ln(2) for a constant
population size, while pGzts/2 ln(2), when t, the
number of generations between population bottlenecks,
is moderately large. For a mutation that increases
fecundity, the analogous approximation is pz2s in a
constant population size (Haldane 1927), while an
J. R. Soc. Interface (2008)
estimate of pzts was obtained for a population with a
moderately large t (Heffernan & Wahl 2002). Thus,
assuming that all mutations confer a fecundity advan-
tage leads to an overestimate of the order 2 ln(2)w1.4
for generation time mutations.

These results emphasize the sensitivity of fixation
probabilities to the underlying life history of the
organism being modelled, and to the specific effect of
the beneficial mutation on this life history. Based on
these results, Hubbarde and co-authors studied the
fixation probability of beneficial mutations in a ‘burst–
death model’ (Hubbarde et al. 2007; Hubbarde & Wahl
2008). This model is based on the well-known continu-
ous-time branching process called the birth–death
process, in which each individual faces a constant
probability of death, and a constant probability of
undergoing a birth event, in any short interval of time.
Thus, the generation time or lifetime of each individual
is exponentially distributed.

In contrast to a birth–death model, however, a burst
event can add more than one offspring to the population
simultaneously (a burst of two might model bacterial
fission; a burst of 100 might model a lytic virus). The
burst–death model explored by Hubbarde et al. treats
populations in which the expected size is constant (i.e.
the death rate balances the burst rate), and populations
that grow between periodic bottlenecks. Hubbarde et al.
computed the fixation probability for mutations that
confer an advantage by increasing either the burst size or
the burst rate. This work was extended by Alexander &
Wahl (2008) who compared the fixation probability of
mutations with equivalent effects on the long-term
growth rate, i.e. equally ‘fit’ mutations. The latter
paper demonstrates that mutations that decrease the
death rate (increasing survival) are most likely to fix,
followed by mutations that increase the burst rate.
Mutations that increase the burst size are least likely to
fix in the burst–death model.

The important departure in the burst–death model
from previous work is that a beneficial mutation may
affect a number of life-history traits independently.
Thus, the mean number of offspring can change
independently of p0, the probability of having zero
offspring. While the mean largely determines the long-
term growth rate, or Malthusian fitness, of the mutant,
the fixation probability is sensitive to short-term
processes, particularly p0.

By contrast, when generation times are fixed and
offspring numbers are Poisson distributed, the only way
for a mutation to be beneficial is for it to increase the
mean number of offspring, by a factor typically denoted
(1Cs). The probability of leaving zero offspring is
completely constrained by this mean, and this ulti-
mately implies that fixation probabilities, while per-
haps not equal to 2s, are at least proportional to s under
these classic assumptions.

This simple proportionality no longer holds when
more complicated, and thus more realistic, life histories
are considered. The overall conclusion here is that for
many real populations, estimates of the fixation prob-
ability should take into account both the life-history
details of the organism and the mechanism by which the
mutation confers a reproductive advantage.
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7. FROM THEORY TO EXPERIMENT

The experimental study of evolution has been recently
accelerated through the study of rapidly evolving
organisms, such as bacteria, viruses and protozoa (Lenski
et al. 1991; Lenski & Travisano 1994; Papadopoulos et al.
1999).These organismsadapt to laboratory conditions on
experimentally feasible time scales, making them ideal
candidates for the real-time study of evolution. These
experiments have generated tremendous interest in
evolutionary biology, allowing for experimental tests of
some of the most basic features of adaptation.

To date, however, the fixation probability of a
specific beneficial mutation has never been experimen-
tally measured. With the advent of serial passaging
techniques that allow for experimental designs with
very high numbers of replicates (e.g. 96-well plates), we
argue that an experimental estimate of the fixation
probability is finally within reach. After 80 or 90 years
of theory, the possibility of experimental validation
is fascinating.

On the other hand, the models developed to date
are probably not sufficiently tailored to the life histories
of the organisms that could be used in such experi-
ments. Neither bacteria nor viruses are well modelled
by discrete, non-overlapping generations, nor by a
Poisson distribution of offspring. Recent contributions
by Parsons & Quince (2007a,b) and Lambert (2006),
as well as work from our own group (Hubbarde et al.
2007; Alexander & Wahl 2008) have highlighted
the extreme sensitivity of fixation probabilities to
such assumptions.

For experiments involving bacteria, we suggest that
theoretical predictions of the fixation probability must
be based specifically on bacterial fission. A beneficial
mutation might reduce the generation time, for
example, or increase the probability that one or both
of the daughter cells survive to reproductive maturity.
For experiments involving viruses, theoretical predic-
tions must likewise be tailored to include the processes
of viral attachment, the eclipse time and then the release
of new viral particles through budding or lysis. Other
microbial systems will present their own life histories
and their own modelling challenges. In addition,
population bottlenecks, washout from a chemostat or
limited resources must be imposed in experimental
systems to prevent unbounded microbial growth.

A final note is that very often, in estimating the
fixation probability, it is assumed that selection is
weak. This phrase means for example that the selective
advantage s is sufficiently small that terms of order s2

are negligible. This assumption has been widely, and
very usefully, employed in population genetics over
decades, and is still considered to be relevant to most
natural populations. Recent evidence from the experi-
mental evolution of microbial populations, however,
has indicated that some beneficial mutations exert
extremely high selection pressures, with s of the order
of 10 or more (Bull et al. 2000). Thus, a further
challenge for theoreticians is to design organism- and
protocol-specific models that retain accuracy and
tractability, even for very strong selective effects.
J. R. Soc. Interface (2008)
The authors are grateful to four anonymous referees,
whose comments strengthened this review, and to the
Natural Sciences and Engineering Research Council of
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REFERENCES

Alexander, H. K. & Wahl, L. M. 2008 Fixation probabilities
depend on life history: fecundity, generation time and
survival in a burst-death model. Evolution 62, 1600–1609.
(doi:10.1111/j.1558-5646.2008.00396.x)

Athreya, K. B. 1992 Rates of decay for the survival
probability of a mutant gene. J. Math. Biol. 30, 577–581.
(doi:10.1007/BF00948892)

Barton, N. H. 1993 The probability of fixation of a favoured
allele in a subdivided population. Genet. Res. 62, 149–157.

Barton, N. H. 1994 The reduction in fixation probability
caused by substitutions at linked loci. Genet. Res. 64,
199–208.

Barton, N. H. 1995 Linkage and the limits to natural
selection. Genetics 140, 821–841.

Barton, N. H. & Rouhani, S. 1991 The probability of fixation
of a new karyotype in a continuous population. Evolution
45, 499–517. (doi:10.2307/2409908)

Bull, J. J., Badgett, M. R., Wichman, H. A., Huelsenbeck,
J. P., Hillis, D. M., Gulati, A., Ho, C. & Molineux, I. J.
1997 Exceptional convergent evolution in a virus.Genetics
147, 1497–1507.

Bull, J. J., Badgett, M. R. &Wichman, H. A. 2000 Big-benefit
mutations in a bacteriophage inhibited with heat. Mol.
Biol. Evol. 17, 942–950.

Campos, P. R. A. & de Oliveira, V. M. 2004Mutational effects
on the clonal interference phenomenon. Evolution 58,
932–937. (doi:10.1111/j.0014-3820.2004.tb00427.x)

Campos, P. R. A., Adami, C. & Wilke, C. O. 2004 Modeling
stochastic clonal interference. In Modeling in molecular
biology (eds G. Ciobanu&G. Rozenberg). Springer Series in
Natural Computing, pp. 21–39. Berlin, Germany: Springer.

Campos, P. R. A., Neto, P. S. C. A., de Oliveira, V. M. &
Gordo, I. 2008 Environmental heterogeneity enhances
clonal interference. Evolution 62, 1390–1399. (doi:10.1111/
j.1558-5646.2008.00380.x)

Champagnat, N. & Lambert, A. 2007 Evolution of discrete
populations and the canonical diffusion of adaptive
dynamics. Ann. Appl. Probab. 17, 102–155. (doi:10.1214/
105051606000000628)

Charlesworth, B. 1994 The effect of background selection
against deleterious mutations on weakly selected, linked
variants. Genet. Res. Camb. 63, 213–227.

Cherry, J. L. 2003 Selection in a subdivided population with
local extinction and recolonization.Genetics 164, 789–795.

Cherry, J. L. 2004 Selection, subdivision and extinction and
recolonization. Genetics 166, 1105–1114. (doi:10.1534/
genetics.166.2.1105)

Crow, J. F. 1994 Foreword. In Population genetics, molecular
evolution and the neutral theory: selected papers (ed. M.
Kimura), pp. xiii–xv. Chicago, IL: University of Chicago
Press.

De Oliveira, V. M. & Campos, P. R. A. 2004 Dynamics of
fixation of advantageous mutations. Physica A 337,
546–554. (doi:10.1016/j.physa.2004.02.007)

De Visser, J. A. G.M. & Rozen, D. E. 2006 Clonal interference
and the periodic selection of new beneficial mutations in
Escherichia coli. Genetics 172, 2093–2100. (doi:10.1534/
genetics.105.052373)

http://dx.doi.org/doi:10.1111/j.1558-5646.2008.00396.x
http://dx.doi.org/doi:10.1007/BF00948892
http://dx.doi.org/doi:10.2307/2409908
http://dx.doi.org/doi:10.1111/j.0014-3820.2004.tb00427.x
http://dx.doi.org/doi:10.1111/j.1558-5646.2008.00380.x
http://dx.doi.org/doi:10.1111/j.1558-5646.2008.00380.x
http://dx.doi.org/doi:10.1214/105051606000000628
http://dx.doi.org/doi:10.1214/105051606000000628
http://dx.doi.org/doi:10.1534/genetics.166.2.1105
http://dx.doi.org/doi:10.1534/genetics.166.2.1105
http://dx.doi.org/doi:10.1016/j.physa.2004.02.007
http://dx.doi.org/doi:10.1534/genetics.105.052373
http://dx.doi.org/doi:10.1534/genetics.105.052373


1288 Review. Fixation probability Z. Patwa and L. M. Wahl
Desai, M. M. & Fisher, D. S. 2007 Beneficial mutation–
selection balance and the effect of linkage on positive
selection. Genetics 176, 1759–1798. (doi:10.1534/genetics.
106.067678)

Desai, M. M., Fisher, D. S. & Murray, A. W. 2007 The speed
of evolution and maintenance of variation in asexual
populations. Curr. Biol. 17, 385–394. (doi:10.1016/j.cub.
2007.01.072)

Domingo, E., Biebricher, C. K., Eigen, M. & Holland, J. J.
2001 Quasispecies and RNA virus evolution: principles and
consequences. Georgetown, TX: Landes Bioscience.

Eigen, M. & Schuster, P. 1979 The hypercycle: a principle of
natural self-organization. Berlin, Germany: Springer.

Eigen, M., McCaskill, J. & Schuster, P. 1988 Molecular quasi-
species. J. Phys. Chem. 92, 6881–6891. (doi:10.1021/
j100335a010)

Eigen, M., McCaskill, J. & Schuster, P. 1989 The molecular
quasi-species. Adv. Phys. Chem. 75, 149–263. (doi:10.
1002/9780470141243.ch4)

Eldredge, N. 1995 Reinventing Darwin. The great debate at
the high table of evolutionary theory. New York, NY:
Wiley.

Eldredge, N. 2003 Evolutionary dynamics: exploring the
interplay of selection, accident, neutrality, and function.
New York, NY: Oxford University Press.

Ewens, W. J. 1967 The probability of survival of a new
mutant in a fluctuating environment. Heredity 22,
438–443. (doi:10.1038/hdy.1967.53)

Fisher, R. A. 1922 On the dominance ratio. Proc. R. Soc.
Edin. 50, 204–219.

Fisher, R. A. 1930 The evolution of dominance in certain
polymorphic species. Am. Nat. 64, 385–406. (doi:10.1086/
280325)

Gale, J. S. 1990 Theoretical population genetics. London, UK:
Unwin Hyman.

Gavrilets, S. & Gibson, N. 2002 Fixation probabilities in a
spatially heterogeneous environment. Popul. Ecol. 44,
51–58. (doi:10.1007/s101440200007)

Gerrish, P. J. & Lenski, R. E. 1998 The fate of competing
beneficial mutations in an asexual population. Genetica
102/103, 127–144. (doi:10.1023/A:1017067816551)

Gillespie, J. H. 1974 Natural selection for within-generation
variance in offspring number. Genetics 76, 601–606.

Gillespie, J. H. 1975 Natural selection for within-generation
variance in offspring number: II. Discrete haploid models.
Genetics 81, 403–413.

Goncalves, E. D. A., de Oliveira, V. M., Rosas, A. & Campos,
P. R. A. 2007 Speed of adaptation in structured popu-
lations. Eur. Phys. J. B 59, 127–132. (doi:10.1140/epjb/
e2007-00260-x)

Gordo, I. & Campos, P. R. A. 2006 Adaptive evolution in a
spatially structured asexual population. Genetica 127,
217–229. (doi:10.1007/s10709-005-4012-9)

Haccou, P. & Iwasa, Y. 1996 Establishment probability in
fluctuating environments: a branching process model.
Theor. Popul. Biol. 50, 254–280. (doi:10.1006/tpbi.1996.
0031)

Haccou, P., Jagers, P. & Vatutin, V. A. 2005 Branching
processes. Variation, growth and extinction of populations.
Cambridge Studies in Adaptive Dynamics, vol. 5.
Cambridge, MA: Cambridge University Press.

Haldane, J. B. S. 1927 The mathematical theory of natural
and artificial selection. Proc. Camb. Philos. Soc. 23,
838–844.

Haldane, J. B. S. 1932The causes of evolution. New York, NY:
Harper and Brothers.

Heffernan, J. M. & Wahl, L. M. 2002 The effects of genetic
drift in experimental evolution. Theor. Popul. Biol. 62,
349–356. (doi:10.1016/S0040-5809(02)00002-3)
J. R. Soc. Interface (2008)
Hill, W. G. & Robertson, A. 1966 The effect of linkage on
limits to artificial selection. Genet. Res. 8, 269–294.

Holmes, E. C. & Moya, A. 2002 Is the quasispecies concept
relevant to RNA viruses? J. Virol. 76, 460–462. (doi:10.
1128/JVI.76.1.460-462.2002)

Hubbarde, J. E. & Wahl, L. M. 2008 Estimating the optimal
bottleneck ratio for experimental evolution: the burst-
death model. Math. Biosci 213, 113–118. (doi:10.1016/
j.mbs.2008.03.006)

Hubbarde, J. E., Wild, G. & Wahl, L. M. 2007 Fixation
probabilities when the generation times are variable: the
burst–death model. Genetics 176, 1703–1712. (doi:10.
1534/genetics.107.072009)

Jain, K. & Krug, J. 2007 Deterministic and stochastic regimes
of asexual evolution on rugged fitness landscapes. Genetics
175, 1275–1288. (doi:10.1534/genetics.106.067165)

Jenkins, G. M., Worobey, M., Woelk, C. H. & Holmes, E. C.
2001 Evidence for the non-quasispecies evolution of RNA
viruses. Mol. Biol. Evol. 18, 987–994.

Johnson, T. & Barton, N. H. 2002 The effect of deleterious
alleles on adaptation in asexual populations. Genetics 162,
395–411.

Johnson, T. &Gerrish, P. J. 2002 The fixation probability of a
beneficial allele in a population dividing by binary fission.
Genetica 115, 283–287. (doi:10.1023/A:1020687416478)

Kassen, R. & Bataillon, T. 2006 The distribution of fitness
effects among beneficial mutations prior to selection in
experimental populations of bacteria. Nat. Genet. 38,
484–488. (doi:10.1038/ng1751)

Kimura, M. 1957 Some problems of stochastic processes in
genetics. Ann. Math. Stat. 28, 882–901. (doi:10.1214/
aoms/1177706791)

Kimura, M. 1962 On the probability of fixation of mutant
genes in a population. Genetics 47, 713–719.

Kimura, M. 1964 Diffusion models in population genetics.
J. Appl. Probab. 1, 177–232. (doi:10.2307/3211856)

Kimura, M. 1970 Stochastic processes in population genetics,
with special reference to distribution of gene frequencies
and probability of gene fixation. In Mathematical topics in
population genetics (ed. K. Kojima), pp. 178–209. New
York, NY: Springer.

Kimura, M. & Ohta, T. 1970 Probability of fixation of a
mutant gene in a finite population when selective
advantage decreases with time. Genetics 65, 525–534.

Kimura, M. & Ohta, T. 1974 Probability of gene fixation in an
expanding finite population. Proc. Natl Acad. Sci. USA 71,
3377–3379. (doi:10.1073/pnas.71.9.3377)

Kojima, K. & Kelleher, T. M. 1962 The survival of mutant
genes. Am. Nat. 96, 329–343. (doi:10.1086/282242)

Lambert, A. 2006 Probability of fixation under weak
selection: a branching process unifying approach. Theor.
Popul. Biol. 69, 419–441. (doi:10.1016/j.tpb.2006.01.002)

Lande, R. 1979 Effective deme sizes during long-term
evolution estimated from rates of chromosomal rearrange-
ment. Evolution 33, 234–251. (doi:10.2307/2407380)

Lande, R. 2007 Expected relative fitness and the adaptive
topography of fluctuating selection. Evolution 61,
1835–1846. (doi:10.1111/j.1558-5646.2007.00170.x)

Lange, K. & Fan, R. Z. 1997 Branching process models for
mutant genes in nonstationary populations. Theor. Popul.
Biol. 51, 118–133. (doi:10.1006/tpbi.1997.1297)

Lenski, R. E. & Travisano, M. 1994 Dynamics of adaptation
and diversification: a 10000-generation experiment with
bacterial populations. Proc. Natl Acad. Sci. USA 91,
6808–6814. (doi:10.1073/pnas.91.15.6808)

Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C.
1991 Long-term experimental evolution in Escherichia
coli: I. Adaptation and divergence during 2000 gener-
ations. Am. Nat. 138, 1315–1341. (doi:10.1086/285289)

http://dx.doi.org/doi:10.1534/genetics.106.067678
http://dx.doi.org/doi:10.1534/genetics.106.067678
http://dx.doi.org/doi:10.1016/j.cub.2007.01.072
http://dx.doi.org/doi:10.1016/j.cub.2007.01.072
http://dx.doi.org/doi:10.1021/j100335a010
http://dx.doi.org/doi:10.1021/j100335a010
http://dx.doi.org/doi:10.1002/9780470141243.ch4
http://dx.doi.org/doi:10.1002/9780470141243.ch4
http://dx.doi.org/doi:10.1038/hdy.1967.53
http://dx.doi.org/doi:10.1086/280325
http://dx.doi.org/doi:10.1086/280325
http://dx.doi.org/doi:10.1007/s101440200007
http://dx.doi.org/doi:10.1023/A:1017067816551
http://dx.doi.org/doi:10.1140/epjb/e2007-00260-x
http://dx.doi.org/doi:10.1140/epjb/e2007-00260-x
http://dx.doi.org/doi:10.1007/s10709-005-4012-9
http://dx.doi.org/doi:10.1006/tpbi.1996.0031
http://dx.doi.org/doi:10.1006/tpbi.1996.0031
http://dx.doi.org/doi:10.1016/S0040-5809(02)00002-3
http://dx.doi.org/doi:10.1128/JVI.76.1.460-462.2002
http://dx.doi.org/doi:10.1128/JVI.76.1.460-462.2002
http://dx.doi.org/doi:10.1016/j.mbs.2008.03.006
http://dx.doi.org/doi:10.1016/j.mbs.2008.03.006
http://dx.doi.org/doi:10.1534/genetics.107.072009
http://dx.doi.org/doi:10.1534/genetics.107.072009
http://dx.doi.org/doi:10.1534/genetics.106.067165
http://dx.doi.org/doi:10.1023/A:1020687416478
http://dx.doi.org/doi:10.1038/ng1751
http://dx.doi.org/doi:10.1214/aoms/1177706791
http://dx.doi.org/doi:10.1214/aoms/1177706791
http://dx.doi.org/doi:10.2307/3211856
http://dx.doi.org/doi:10.1073/pnas.71.9.3377
http://dx.doi.org/doi:10.1086/282242
http://dx.doi.org/doi:10.1016/j.tpb.2006.01.002
http://dx.doi.org/doi:10.2307/2407380
http://dx.doi.org/doi:10.1111/j.1558-5646.2007.00170.x
http://dx.doi.org/doi:10.1006/tpbi.1997.1297
http://dx.doi.org/doi:10.1073/pnas.91.15.6808
http://dx.doi.org/doi:10.1086/285289


Review. Fixation probability Z. Patwa and L. M. Wahl 1289
Lundy, I. J. & Possingham, H. P. 1998 Fixation probability of
an allele in a subdivided population with asymmetric
migration. Genet. Res. Camb. 71, 237–245.

Manrubia, S. C., Escarmı́s, C., Domingo, E. & Lázaro, E. 2005
High mutation rates, bottlenecks, and robustness of RNA
viral quasispecies. Genetics 347, 273–282. (doi:10.1016/j.
gene.2004.12.033)

Maruyama, T. 1970 On the fixation probability of mutant
genes in a subdivided population.Genet. Res. 15, 221–225.

Maruyama, T. 1974 A simple proof that certain quantities are
independent of the geographical structure of population.
Theor. Popul. Biol. 5, 148–154. (doi:10.1016/0040-5809
(74)90037-9)

Maruyama, T. 1977 Stochastic problems in population
genetics. Berlin, Germany: Springer.

Moran, P. A. P. 1958 Random processes in genetics. Proc.
Camb. Philos. Soc. 54, 60–71.

Moran, P. A. P. 1960 The survival of a mutant gene under
selection. II. J. Aust. Math. Soc. 1, 485–491.

Moya, A., Elena, S. F., Bracho, A., Miralles, R. & Barrio, E.
2000 The evolution of RNA viruses: a population genetics
view. Proc. Natl Acad. Sci. USA 97, 6967–6973. (doi:10.
1073/pnas.97.13.6967)

Muller, H. J. 1932 Some genetic aspects of sex. Am. Nat. 8,
118–138. (doi:10.1086/280418)

Muller, H. J. 1964 The relation of recombination to
mutational advance. Mutat. Res. 1, 2–9.

Ohta, T. 1972 Population size and rate of evolution. J. Mol.
Evol. 1, 305–314. (doi:10.1007/BF01653959)

Orr, H. A. 1994 Does diploidy increase rate of adaptation?
Genetics 136, 1475–1480.

Orr, H. A. 2000 The rate of adaptation in asexuals. Genetics
155, 961–968.

Orr, H. A. 2003 The distribution of fitness effects among
beneficial mutations. Genetics 163, 1519–1526.

Orr, H. A. 2007 Absolute fitness, relative fitness, and utility.
Evolution 61, 2997–3000. (doi:10.1111/j.1558-5646.2007.
00237.x)

Otto, S. P. &Whitlock, M. C. 1997 The probability of fixation
in populations of changing size. Genetics 146, 723–733.

Papadopoulos, D., Schneider, D., Meier-Eiss, J., Arber, W.,
Lenski, R. E. & Blot, M. 1999 Genomic evolution during
a 10000-generation experiment with bacteria. Proc. Natl
Acad. Sci. USA 96, 3807–3812. (doi:10.1073/pnas.96.7.
3807)

Parsons, T. & Quince, C. 2007a Fixation in haploid
populations exhibiting density dependence: I. The non-
neutral case. Theor. Popul. Biol. 72, 121–135. (doi:10.
1016/j.tpb.2006.11.004)

Parsons, T. & Quince, C. 2007b Fixation in haploid
populations exhibiting density dependence: II. The quasi-
neutral case. Theor. Popul. Biol. 72, 468–479. (doi:10.
1016/j.tpb.2007.04.002)

Peck, J. R. 1994 A ruby in the rubbish: beneficial mutations,
deleterious mutations and the evolution of sex. Genetics
137, 597–606.

Perfeito, L., Pereira, M. I., Campos, P. R. A. & Gordo, I. 2008
The effect of spatial structure on adaptation in Escherichia
coli. Biol. Lett. 4, 57–59. (doi:10.1098/rsbl.2007.0481)

Pollak, E. 1966 On the survival of a gene in a subdivided
population. J. Appl. Probab. 3, 142–195. (doi:10.2307/32
12043)
J. R. Soc. Interface (2008)
Pollak, E. 1972 Some effects of two types of migration on the
survival of a gene. Biometrics 28, 385–400. (doi:10.2307/
2556155)

Pollak, E. 2000 Fixation probabilities when the population
size undergoes cyclic fluctuations. Theor. Popul. Biol. 57,
51–58. (doi:10.1006/tpbi.1999.1436)

Proulx, S. R. 2000 The ESS under spatial variation with
applications to sex allocation. Theor. Popul. Biol. 58,
33–47. (doi:10.1006/tpbi.2000.1474)

Rokyta, D. R., Joyce, P., Caudle, S. B. & Wichman, H. A.
2005 An empirical test of the mutational landscape model
of adaptation using a single-stranded DNA virus. Nat.
Genet. 37, 441–444. (doi:10.1038/ng1535)

Rosas, A., Gordo, I. & Campos, P. R. A. 2005 Scaling, genetic
drift, and clonal interference in the extinction pattern of
asexual population. Phys. Rev. E 72, 012 901. (doi:10.
1103/PhysRevE.72.012901)

Rozen, D. E., de Visser, J. A. G. M. & Gerrish, P. J. 2002
Fitness effects of fixed beneficial mutations in microbial
populations. Curr. Biol. 12, 1040–1045. (doi:10.1016/
S0960-9822(02)00896-5)

Shpak, M. & Proulx, S. R. 2007 The role of life cycle and
migration in selection for variance in offspring number.
Bull. Math. Biol. 69, 837–860. (doi:10.1007/s11538-006-
9164-y)

Slatkin, M. 1981 Fixation probabilities and fixation times in a
subdivided population. Evolution 35, 477–488. (doi:10.
2307/2408196)

Tachida, H. & Iizuka, M. 1991 Fixation probability in
spatially changing environments. Genet. Res. 58, 243–251.

Wahl, L. M. &DeHaan, C. S. 2004 Fixation probability favors
increased fecundity over reduced generation time.
Genetics 168, 1009–1018. (doi:10.1534/genetics.104.02
9199)

Wahl, L. M. & Gerrish, P. J. 2001 The probability that
beneficial mutations are lost in populations with periodic
bottlenecks. Evolution 55, 2606–2610. (doi:10.1111/j.0014-
3820.2001.tb00772.x)

Wahl, L. M., Gerrish, P. J. & Saika-Voivod, I. 2002
Evaluating the impact of population bottlenecks in
experimental evolution. Genetics 162, 961–971.

Whitlock, M. C. 2003 Fixation probability and time in
subdivided populations. Genetics 164, 767–779.

Whitlock, M. C. & Gomulkiewicz, R. 2005 Probability of
fixation in a heterogeneous environment. Genetics 171,
1407–1417. (doi:10.1534/genetics.104.040089)

Wilke, C. O. 2003 Probability of fixation of an advantageous
mutant in a viral quasispecies. Genetics 163, 467–474.

Wilke, C. O. 2004 The speed of adaptation in large asexual
populations. Genetics 167, 2045–2053. (doi:10.1534/
genetics.104.027136)

Wilke, C. O. 2005 Quasispecies theory in the context of
population genetics. BMC Evol. Biol. 5, 44. (doi:10.1186/
1471-2148-5-44)

Wright, S. 1931 Evolution in Mendelian populations.
Genetics 16, 97–159.

Wright, S. 1945 The differential equation of the distribution of
gene frequencies. Proc. Natl Acad. Sci. USA 31, 382–389.
(doi:10.1073/pnas.31.12.382)

Yamazaki, T. 1977 The effects of overdominance on linkage in
a multilocus system. Genetics 86, 227–236.

http://dx.doi.org/doi:10.1016/j.gene.2004.12.033
http://dx.doi.org/doi:10.1016/j.gene.2004.12.033
http://dx.doi.org/doi:10.1016/0040-5809(74)90037-9
http://dx.doi.org/doi:10.1016/0040-5809(74)90037-9
http://dx.doi.org/doi:10.1073/pnas.97.13.6967
http://dx.doi.org/doi:10.1073/pnas.97.13.6967
http://dx.doi.org/doi:10.1086/280418
http://dx.doi.org/doi:10.1007/BF01653959
http://dx.doi.org/doi:10.1111/j.1558-5646.2007.00237.x
http://dx.doi.org/doi:10.1111/j.1558-5646.2007.00237.x
http://dx.doi.org/doi:10.1073/pnas.96.7.3807
http://dx.doi.org/doi:10.1073/pnas.96.7.3807
http://dx.doi.org/doi:10.1016/j.tpb.2006.11.004
http://dx.doi.org/doi:10.1016/j.tpb.2006.11.004
http://dx.doi.org/doi:10.1016/j.tpb.2007.04.002
http://dx.doi.org/doi:10.1016/j.tpb.2007.04.002
http://dx.doi.org/doi:10.1098/rsbl.2007.0481
http://dx.doi.org/doi:10.2307/3212043
http://dx.doi.org/doi:10.2307/3212043
http://dx.doi.org/doi:10.2307/2556155
http://dx.doi.org/doi:10.2307/2556155
http://dx.doi.org/doi:10.1006/tpbi.1999.1436
http://dx.doi.org/doi:10.1006/tpbi.2000.1474
http://dx.doi.org/doi:10.1038/ng1535
http://dx.doi.org/doi:10.1103/PhysRevE.72.012901
http://dx.doi.org/doi:10.1103/PhysRevE.72.012901
http://dx.doi.org/doi:10.1016/S0960-9822(02)00896-5
http://dx.doi.org/doi:10.1016/S0960-9822(02)00896-5
http://dx.doi.org/doi:10.1007/s11538-006-9164-y
http://dx.doi.org/doi:10.1007/s11538-006-9164-y
http://dx.doi.org/doi:10.2307/2408196
http://dx.doi.org/doi:10.2307/2408196
http://dx.doi.org/doi:10.1534/genetics.104.029199
http://dx.doi.org/doi:10.1534/genetics.104.029199
http://dx.doi.org/doi:10.1111/j.0014-3820.2001.tb00772.x
http://dx.doi.org/doi:10.1111/j.0014-3820.2001.tb00772.x
http://dx.doi.org/doi:10.1534/genetics.104.040089
http://dx.doi.org/doi:10.1534/genetics.104.027136
http://dx.doi.org/doi:10.1534/genetics.104.027136
http://dx.doi.org/doi:10.1186/1471-2148-5-44
http://dx.doi.org/doi:10.1186/1471-2148-5-44
http://dx.doi.org/doi:10.1073/pnas.31.12.382

	The fixation probability of beneficial mutations
	Introduction
	Historical overview
	Populations of changing size
	Growing, declining or cyclic population sizes
	Population bottlenecks
	Dynamically changing population sizes

	Subdivided populations
	Multiple segregating alleles
	Effects of linked and deleterious alleles
	Quasi-species fixation
	Clonal interference

	Life-history models
	From theory to experiment
	The authors are grateful to four anonymous referees, whose comments strengthened this review, and to the Natural Sciences and Engineering Research Council of Canada for funding.
	References


