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A common observation in phyloge­
netic comparisons of the amino acid se­
quences ofa particular protein is that the
rate of evolution of the protein is nearly
constant over extended periods of time.
This constancy was first noticed by Zuck­
erkandl and Pauling (1965) and prompt­
ed them to call the amino acid substi­
tution process a "molecular evolutionary
clock." Since 1965 a great deal of addi­
tional data has supported the basic idea
of the molecular clock although detailed
studies have shown the clock to be a rath­
er erratic one. The detailed studies have
been oftwo different sorts: broadly based
statistical studies ofa number ofproteins
over relatively few species (e.g., Langley
and Fitch, 1974), or very detailed looks
at a particular protein over a large num­
ber of species (e.g., Baba et aI., 1981). In
general, these studies support the crucial
observation made by Ohta and Kimura
(1971) that the variance in the evolu­
tionary rate is higher than would be ex­
pected if the substitution process were a
Poisson process. A major goal of theo­
retical population genetics must be to ac­
count for this elevated variance.

There are formidable statistical prob­
lems associated with the estimation of
the variance in the rate of substitutions
of amino acids. The problem is com­
pounted by the fact that the variance is
only interesting when compared to the
mean as in the ratio K = Var(Nt) / E(Nt ) ,

where N, is the number of substitutions
in a period of time, t. Obtaining accurate
estimates of ratios is difficult in the best
of statistical settings. For protein evolu­
tion data where the number of substitu­
tions on each leg must themselves be in­
ferred by a procedure such as Fitch and
Margoliash's (1967) maximum parsi­
mony procedure, the sampling variance

of the final estimate must be relatively
high (and itself almost impossible to es­
timate). Nonetheless, a number of stud­
ies have all pointed to a value of K of
around 2 to 3. Ohta and Kimura (1971)
were the first to estimate K and did so
using the available data on hemoglobins
and cytochrome c. They reported a value
in the range 1.5 to 2.5. The studies by
Langley and Fitch (1974) improved on
this in the sense of using more data al­
though their procedure was not expressly
designed to estimate K. They concluded
K was around 2.5. Later, Gillespie and
Langley (1979) re-examined the statisti­
cal procedure used in the earlier studies
and through a very crude argument also
claimed that K was around 2.5.

In studies that examine only a single
protein over a large number of species
the aim has been not so much to estimate
K as to look more directly for periods of
relatively fast or slow evolution in the
protein. These studies, such as those by
Goodman et aI. (1982) generally present
fairly convincing evidence of variations
in the rates ofevolution although Kimura
(1981) has called into question the ability
of these studies to uncover variation in
the rates of evolution.

These observations are critical for an
understanding of the forces responsible
for amino acid substitutions. One of the
most appealing theories for the evolution
ofproteins is the neutral allele theory first
proposed by Kimura (1968a, 1968b) and
King and Jukes (1969). This theory pre­
dicts that the rate ofsubstitutions will be
constant although it does not imply that
K will equal one as has been commonly
assumed. Rather it was shown by Gilles­
pie and Langley (1979) that K will always
be greater than one under the neutral al­
lele theory and will actually increase with
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(J = 4nu (n is the diploid population size,
u is the neutral mutation rate). By another
ofthe crude arguments in that paper they
claimed that (J would have to be around
4 in order for the neutral allele theory to
account for the high value of K observed
in the protein evolution data.

Recently Hudson (1983) has provided
the first sophisticated look at the protein
evolution data using the neutral allele
model as the null hypothesis. By a clever
computer algorithm he was able to show
that the neutral allele theory in its most
naive form (fixed u, constant population
size, etc.) would only be compatible with
the protein evolution data if (J is in the
range 1-10. He argued further that these
values of (J are about an order of mag­
nitude larger than those estimated from
protein polymorphism data and thereby
called into question the validity of the
neutral allele theory.

While there may well be modifications
to the neutral theory that will preserve it
in the face ofthis argument, the argument
helps to focus attention on the impor­
tance of accounting for the high value of
K in whatever mechanism is proposed for
amino acid substitutions. Not everyone
agrees with this point of view, however.
Kimura (1982) argues that "emphasizing
local fluctuations as evidence against the
neutral theory, while neglecting to in­
quire why the rate is intrinsically so reg­
ular or constant is misguided." An ob­
vious inversion of this quote would
represent our point of view.

The primary aim of this paper is to
argue that if natural selection is respon­
sible for the evolution of proteins then
because of the nature of the genetic code
and the mutation process we would ex­
pect a value of K quite similar to that
observed in the protein evolution data.
There are a number of somewhat unre­
lated components that go into the argu­
ment so the next section will be devoted
to an overview of the remainder of the
paper.

Overview

The point of departure is a relatively
simple observation about the implica-

tions ofthe structure ofDNA on the ease
with which evolution can move through
the space of nucleotide sequences. If a
particular locus is composed of d nu­
cleotides and if one particular sequence
at this locus is currently fixed in the pop­
ulation, then that locus can mutate in a
single step to one of 3d neighboring se­
quences. The rate of mutation to anyone
of these 3d sequences is u, the nucleotide
mutation rate. U is a very small number,
typically 10-9 to 10-8 • Ifwe assume that
the fitnesses of these neighboring se­
quences differ from that of the currently
fixed sequence (i.e., there are no neutral
alleles), then we will show that with very
high probability the first selected evolu­
tionary change at this locus will involve
one of these neighboring sequences. Of
the 3d sequences only a small number
(perhaps zero) of them may be more fit
than the currently fixed sequence. Ifthere
are one or more mutants that are more
fit than the currently fixed sequence then
one ofthe more fit alleles will ultimately
become fixed in the population. (Recall
that the mutations are recurrent.)

The fixation of a new sequence has an
interesting implication. It immediately
makes available a new set of 3d - 1 se­
quences that are now available for selec­
tion to act on. All of these sequences are
two mutational steps away from the orig­
inal sequence and so were essentially un­
available for selection previously. Of
these sequences some small number may
be more fit than the allele that is currently
fixed in the population and so one ofthese
new alleles will ultimately become fixed.

This process will continue until the fix­
ation of an allele occurs such that all 3d
neighboring sequences are less fit than
this newly fixed allele and so the process
will effectively stop. There may well be
other sequences that are more fit than this
final sequence but since those sequences
are two or more mutational steps away
from the currently fixed allele, and since
the intervening alleles are less fit than the
currently fixed allele, the waiting time to
arrive at these more fit alleles is much
longer than the time scale on which we
observe evolution to occur.
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With each environmental change we
picture this little burst of allelic substi­
tutions occurring. Sometimes only a sin­
gle substitution will occur. Sometimes
four or five will occur. The important
point is that it is the nature of the DNA
mutational process that is severely re­
stricting the distance through the "mu­
tational landscape" that evolution pro­
ceeds. The mutational structure, in effect,
creates innumerable selective peaks in the
adaptive topography. Curiously, the
speed with which a species can evolve
through this landscape increases with the
size of the population. The new stochas­
tic element introduced by these excur­
sions through the mutational landscape
may well account for the high value of K.

In order to make these statements more
precise and to investigate their implica­
tions on the expected value of K we will
require a number of results that are not
currently in the literature. These results
will appear in the following four sections
before we return to the original question.
The first of these sections provides a gen­
eral setting that allows a stochastic de­
scription of the substitution process in
terms of the process of environmental
change and the bursts of evolution men­
tioned above. The next two sections in­
vestigate the waiting times and fixation
probabilities associated with the bursts
ofevolution. In these sections some pow­
erful new techniques will be employed
that allow a description of the waiting
time properties of multidimensional dif­
fusion processes. In the fourth section the
method of assigning fitnesses to geno­
types will be described and use will be
made of extreme value theory in order
to arrive at some reasonably robust re­
sults. Finally, we will return to the prob­
lem of molecular evolution and discuss
more fully the implications ofthe results.

The bulk of the paper uses haploid
models. This is done only for clarity. The
major results apply equally well to dip­
loid species with incomplete dominance,
only the constants will change. Those dif­
ferences that do exist between diploids
and haploids will be described in the final
section.

The General Setting
In molecular evolution studies one is

typically provided with a single DNA or
protein sequence from each of a number
ofdifferent species. In this section we will
be concerned with the special case of a
sample ofone sequence from each oftwo
species. We will provide a stochastic de­
scription of the number of substitutions
that have occurred in the lineages sepa­
rating the two sequences.

The two sequences in the sample have
a common ancestor sequence that oc­
curred at some period, T, in the past. This
time will be longer, in general, than the
split time of the two species. If the two
species became reproductively isolated t
generations ago then the time back to the
common ancestor sequence will be T =
t + T, where T is a random variable that
represents the time backwards from the
time of isolation of the two species until
the occurrence of the common ancestor
sequence. For a population that is not
experiencing any natural selection, Twill
be geometrically distributed with a mean
of n, the haploid population size (or 2n
for diploid populations). This partition­
ing of the time to the common ancestor
sequence into a deterministic and a sto­
chastic component was introduced by
Gillespie and Langley (1979) to demon­
strate that K in the neutral model is greater
than one (see equation 3 below).

Let S be the total number ofmutations
that accumulate between the two se­
quences during time T. These substitu­
tions may be partitioned into those caused
by natural selection, VT and those due to
the accumulation of neutral alleles, UT •

Thus,

(1)

The number of neutral mutations that
accumulate, U" will depend only on T

and not on any of the selective events
that may be occurring in the population
except through the effects ofthe selective
events on T itself through T. Conditioned
on a fixed T and equal mutation rates to
all nucleotides, the distribution of the
number of neutral mutations that sepa-
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rates the two species is binomially dis­
tributed with mean 2du(t + 1) where d
is the number of nucleotides in the locus
and u is the nucleotide mutation rate.
Since most sequences involve a large
number of components each of which is
unlikely to mutate this distribution may
be adequately approximated by a Pois­
son distribution with the same mean. T,
however, is a random variable so the
Poisson must be randomized with re­
spect to T in order to obtain the full dis­
tribution of UT • Here we note only that
the first two moments ofthis distribution
are

E{UT } = 2du(t + E{T}),

Var{ UT } = 2du(t + E {T}

+ 2du Var{ T}).

It is much more difficult to describe the
stochastic nature of VT • What will be pre­
sented here is but one possibility.

In order to have continuing evolution
by natural selection in a biologically
compelling model one must assume that
evolution is driven by a continually
changing environment. In this paper it
will be assumed that the environmental
changes occur at specific points in time
and that the process of environmental
change may be adequately modelled by
a stationary point process. At each en­
vironmental change the genetic system
will respond with one or more allelic sub­
stitutions at the locus under consider­
ation. We will assume that the time scale
of environmental changes that are rele­
vant to a particular locus is much longer
than the time scale ofthe genetic system's
response to these changes. This assump­
tion will be justified after the dynamics
are described.

Under these assumptions we can write
down the number of allelic substitutions
that are due to natural selection that oc­
curred during the period T as

VT = Xl + X 2 + ... + XM(T)' (2)

where Xi is the number of substitutions
that occurred immediately after the ith
environmental change and M(T) is a sta-

tionary point process representing the
process of environmental change. Much
of the remainder of the paper is con­
cerned with the implications ofthe struc­
ture of DNA on the distribution of the
Xi'

The problem posed in the introduction
concerns the high value of K the ratio of
the variance in the number of substitu­
tions to the mean number of substitu­
tions. The model, as described thus far,
could easily account for this observation
ifwe assume that all substitutions are due
to natural selection, that exactly one sub­
stitution occurs at each environmental
change (Xi = 1), and that the environ­
mental process M(T) has a mean to vari­
ance ratio of around two to three. This
resolution is more than adequate and
nicely accounts for the constancy of evo­
lutionary rates and the observed value of
K. A biological or geological explanation
for the stationarity of M(T) is still re­
quired, however. This could be provided
by the notion that most evolution may
well be in response to the biological en­
vironment (i.e., pathogens, competitors,
etc.) which is itself continually evolving,
the entire system being in a steady state.

A second approach that will be ex­
plored here is to assume that the envi­
ronment changes in a completely random
fashion and that the high value ofK is due
to the nature of DNA itself through the
effects of DNA structure on the Xi' To
pursue this assume that M(T) is a Poisson
process with rate A. By our previous as­
sumption on time scales we can view the
time required for an allelic substitution
to occur after an environmental change
to be essentially instantaneous on the time
scale of the environmental change pro­
cess. Therefore T, the time back to the
common ancestor sequence from the time
of the split into two species, will be the
minimum oftwo random variables. One
is an exponentially distributed random
variable with mean n (the haploid pop­
ulation size) representing the situation
where no environmental change occurs
between t and the occurrence ofthe com­
mon ancestor sequence. The other is also
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an exponentially distributed random
variable but with mean 1/;\ that repre­
sents the time backwards until the oc­
currence of an environmental change.
When an environmental change does oc­
cur and a new mutant with a selective
advantage sweeps through the popula­
tion (instantaneously on the time scale of
M(T» all alleles after the substitution will
be descended from this new allele. The
common ancestor sequence is this new
allele and it occurred at the time of the
environmental change. The minimum of
these two random variables is also ex­
ponentially distributed with moments

E{T} = 1/(1/n + ;\)
Var{T} = E{T}2.

If the common ancestor sequence re­
sulted from the occurrence of a selective
event then since this substitution will be
shared by both of the modern sequences
no new selective substitutions can occur
during T. This allows us to write

E{ Vr } = 2;\tE{Xi }

Var{ Vr } = 2;\t(Var{XJ

E{Xy)

for the selected substitutions. Compare
this with the analogous quantities for a
model with only neutral substitutions:

E{ Ur } = 2dut + 2ndu

= 2dut + fJ

Var{ Ur } = 2dut + 2ndu + (2ndu?

= 2dut + fJ + fJ2.

Here and for the remainder ofthis section
fJ = 2ndu refers to the value of fJ for the
locus rather than a single nucleotide.

To illustrate how these results are use­
ful for understanding the variance to
mean ratio it will prove useful to examine
several special cases.

(i) Pure neutrality, ;\ = O.-In this case
it is easy to show that

K = 1 + fJ/(1 + tin) (3)

as originally given by Gillespie and Lang-

ley (1979). Notice that K > 1 in this case
and is an increasing function of fJ.

(ii) Pure selection, u = O. - In this case

K = E[XJ + Var[XJfE[XJ, (4)

showing that the value of K depends only
on the Xi and is independent of the pro­
cess M(T). The independence from M(T)
stems from our assumption that M(T) is
a Poisson process. For a more general
point process the moments of M(T) will
appear in (4).

(iii) Mixed selection and neutrality with
Var[XJ = 0 and E[xJ = 1. - In this case
each environmental change is associated
with exactly one allelic substitution. This
case would appear to apply to an argu­
ment made by Ohta and Kimura (1971)
that if a few selective substitutions are
thrown into an otherwise neutral model
then K should increase. By a straightfor­
ward calculation we arrive at

K = 1 + [fJI(l + A)]21

[fJ(tln) + 2(tln)A

+ fJ/(1 + A)] (5)

where

A = ns,

To examine Ohta and Kimura's conjec­
ture we must hold the mean number of
substitutions at a fixed value, say v, and
vary the proportion of substitutions that
are selected. Setting

v = E{N(t)}

= fJ(tln) + 2(tln)A

+ fJI(l + A),

we get

K = 1 + [(v - 2A(tln»1

(1 + (tIn)

+ (tln)A)Flv. (6)

Notice that in this formula K is a decreas­
ing function of A. This means that as the
proportion ofselected alleles is increased
the variance to mean ratio actually low­
ers contrary to the claim of Ohta and
Kimura. As the proportion of selected
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alleles approaches one K also approaches
one as would be expected given the un­
derlying assumptions about the Poisson
nature of environmental changes.

Ohta and Kimura were not very clear
as to how they envisioned the progress
of selection in their model. What the
present calculations show is that an ob­
vious candidate for a model that appears
to fit Ohta and Kimura's assumptions
does not have the desired effect on K.

(iv) Mixed selection and neutrality with
Var[XJ > O. - This case will clearly al­
Iowan elevation ofK to the level observed
in the sequence data. What we require is
some plausible model that will allow us
to restrict the acceptable values ofVar[X,].
This will the aim of the following sec­
tions.

Selection on the Neighboring Sequences

In this section some properties ofmul­
ti-allelic directional selection in finite
populations will be described. The prob­
lem suggested by considerations of the
mutational structure of DNA concerns
the fate of advantageous mutations that
differ from the currently fixed allele by a
single nucleotide change. We will derive
the probability that a particular allele be­
comes fixed and the time required for the
fixation to occur. The results are really
minor extensions of those contained in
Gillespie (1983a, 1983b). Throughout
this section only pure selection models
will be examined, no neutral alleles will
be allowed.

Consider a single locus in a haploid
species. Call the currently fixed allele A o

and the K alleles that are more fit than A o:

Ai> i = 1, . . . , k. Let the frequency of
the ith allele be Xi and the fitness of this
allele be 1 + as., with So = a and a > O.
Assume the population size is fixed at n
individuals and the mutation rate from
A o to Ai and back is u. If the selection
and mutation are weak and the popula­
tion size is large then by standard argu­
ments the dynamics of the allele fre­
quencies may be approximated by the
k-dimensional diffusion process

E{dx;} = {ax;(si - s)

+ lfz8(xo - x;)}dt

E {dxidxj} = {xi(oij - xj)}dt. (7)

In this equation

8 = 2nu,

a = na,

s > ~ x.s,

and time has been scaled in units of n
generations. Note that 8 describes the
mutation rate between non-neutral al­
leles in this section but between neutral
alleles in the previous section.

This diffusion cannot be solved di­
rectly in a useful fashion. However, its
behavior can be explored through an
asymptotic analysis that is suggested by
the values of the parameters. As stated
earlier, 8 will be small (i.e., -e; 1.0) in
most populations because of the extreme
smallness of u. a will be assumed to be
large, i.e., :» 1.0. This assumption of
"strong selection" does not imply strong
absolute selection, but rather that the
strength of selection is much larger than
lin. This is quite compatible with what
we ordinarily consider weak (in a abso­
lute sense) selection, In the parameteri­
zation of fitnesses it is assumed that the
magnitudes of the s, are close to one so
that a is a measure of the strength of
selection.

The assumptions of "weak mutation"
(small 8) and "strong selection" (large a)
allow us to approximate the diffusion with
a continuous time, discrete state space
Markov process. This method of ap­
proximation has been described else­
where (Gillespie, 1983a, 1983b). It ex­
ploits a "boundary layer" dynamics that
characterize diffusions with weak muta­
tion and strong selection. In the bound­
ary layer rare alleles are subjected to the
combined effects of drift, mutation, and
selection. The time scale oftheir dynam­
ics in this layer is proportional to lI8a.
When an allele gains a sufficiently high
frequency to leave the boundary layer its
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dynamics are determined almost entirely
by selection and move on a much faster
time scale that is proportional to 1/a. The
state space collapses in this model to the
integers [0, 1, ... ,k] which represent the
currently fixed allele.

If we ignore the possibility of another
allele entering the interior dynamics first,
then the waiting time for the ith allele to
leave the boundary layer and become
fixed is

~ - 1/(Oas), (8)

as 0 -+ 0 and a -+ 00 (Gillespie, 1983a,
1983b). The probability that the ith allele
is the first allele that is fixed is

TJi = s/ 2:: Sj' (9)

The diffusion may be approximated by
the following continuous time, discrete
state space Markov process

This process remains in state zero for an
exponentially distributed length of time
and then jumps to state i with probability
TJi' Of particular interest is that the mean
time spent in state zero,

to = lI(Oa 2:: s), (11)

is independent of the particular state to
which the process jumps. Thus when all
alleles are considered the conditional
mean time for a particular allele to be­
come fixed in the population is the same
for each allele irrespective ofthat allele's
relative selective advantage.

To fully appreciate the time required
for a neighboring sequence to become
fixed we must recall that in arriving at
the diffusion equation (7) time was scaled
in units of n generations. To express the
answer in "real time" and with "real pa­
rameters" multiply the mean time by n
and use the definitions of 0 and a:

tns = nto = 1I(2nua 2:: s), (12)

"ns" meaning "neighboring sequence."
This mean time is the reciprocal of a

product of all of the parameters of the
model. Because they are individually dif­
ficult to estimate, it is difficult to assign
a numerical value to the product. As an
example, however, we could assume the
following

n = 106

u = 10-8

a = 10-3

~ Sj = 10 (number of alleles).

Of these values only the nucleotide mu­
tation rate is known to an accuracy of
one order of magnitude or better. The
others could vary tremendously. Since the
s, are scaled to be order one quantities
the value of the sum will approximately
equal the number of neighboring se­
quences that exceed the currently fixed
sequence in fitness. The value of a is
completely unknown as is the value of n,
those chosen might be said to reflect
moderately weak selection in a moder­
ately large population. When these guess­
es are used

i; ~ 5 X 104•

In other words, for these parameters the
time scale of the genetic system's re­
sponse to environmental change is of the
order of thousands or tens of thousands
of generations. The time scales for the
evolution of proteins are on the order of
one substitution of an amino acid every
million or ten million years. Thus, within
the context of our model the genetic sys­
tem has little difficulty in selectively sub­
stituting neighboring sequences between
environmental changes.

These results may be obtained by a
much simpler argument using branching
process theory. This approach cannot be
used to justify the final answers because
it deals only with events in the "bound­
ary layer" and never explicitly deals with
the interior dynamics. Nonetheless the
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transparenacy ofthe argument makes the
results more accessible.

To find the mean time for an advan­
tageous allele to enter the population we
can first consider the probability of its
en tering in any particular generation. This
is equal to one minus the probability that
none of the alleles produce in that gen­
eration enters the population. If we as­
sume that the number ofalleles produced
in one generation is equal to the expected
number produced, nu, and that the prob­
ability of anyone of them entering the
population is Zas, as given by branching
process theory (see Ewens, 1969 Chap.
7), then the probability that at least one
allele will enter the population in the cur­
rent generation is

1 - (1 - 2as)nU ~ Znuas; (13)

The time until at least one ofthe alleles
enters the population is geometrically
distributed with expectation equal to the
reciprocal of the probability of entering
in any particular generation

t = 1/2nuasi , (14)

which is the same answer that we ob­
tained from the asymptotic analysis of
the diffusion equation. To complete the
argument it is necessary to account for
the time that the entering allele spends
moving through the population. It can be
shown using the theory in section 5.4 of
Ewens (1979) that the mean time spent
moving through the population is
asymptotically ofa smaller order ofmag­
nitude than tin (14) and can be ignored.

In the next section we will compare
these results to the time required to fix
an allele that is two steps away from the
currently fixed allele and separated from
it by an allele that is less fit than the fixed
allele.

Crossing Valleys

In the overview we described the sit­
uation where selection stagnates because
the currently fixed allele is the most fit
among those that are one mutational step
away but less fit than those that are two
steps away. Obviously, if given enough

time the double mutant will eventually
appear and will become fixed in the pop­
ulation. We require an estimate of the
time required for this event to occur in
order to fully appreciate the extent ofthe
stagnation. What follows is a heuristic
argument that seems to provide the an­
swer.

For ease of exposition consider a locus
with only three alleles, Ai' i = 0, 1, 2, with
fitnesses 1, 1 - as, and 1 + as, respec­
tively, with S, s. and a greater than zero.
To model a situation where a fitness "val­
ley" must be crossed start with a popu­
lation that is fixed for allele Ao the mu­
tation scheme has been set up such that
Az is two mutational steps away from Ao,
diagrammatically,

Our aim is to arrive at an asymptotic
expression for the mean time until A z be­
comes fixed (i.e., reaches a high frequen­
cy) in the population as () ---> 0 and a --->

00. This is a two-dimensional waiting
time problem that is considerably more
difficult then the problem in the preced­
ing section. One approach that can pro­
vide an asymptotic expansion for the
mean time involves setting up a process
with a "killing function" that reduces the
dimensionality to one. Another ap­
proach, that will be presented here, uses
a branching process argument and pro­
vides the same answer as the killing func­
tion approach but is much easier to fol­
low.

The derivation involves the calcula­
tion ofthe probability that in any particu­
lar generation an A z allele is produced
that will ultimately take over in the pop­
ulation. If the number of Al alleles in the
population is assumed to equal the ex­
pectation ofthe stationary distribution of
the frequency of the A I allele, u/as, then
the expected number of A z alleles pro­
duced in a single generation is nuz/aS.
The probability that anyone of these ul­
timately becomes fixed in the population
is 2as so the probability that at least one
becomes fixed is approximately
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(nu z/aS)/(2as). (15)

The mean time to wait for this event to
occur is one over this probability or,

tev - S/(2nuZs), (16)

"cv" meaning "crossing valley." As in the
branching process argument of the pre­
VIOUS section, the time that the A z allele
spends sweeping through the population
i~ infinitesimal compared to the waiting
time for the allele that will eventually
take over to appear.

This result is easily extended to incor­
porate more alleles. The mean idea is that
the deleterious alleles are in such low fre­
quency that they do not interact with one
another and thus may be considered sto­
chastically independent. Let S, and s, be
the selection parameters for the ith allele.
The rate of incorporation of alleles is the
sume ofthe rates ofthe individual alleles.
The mean time till the first allele becomes
fixed is the reciprocal of this sum,

t; - l/[2nuZ ~ (S/Si)]· (17)

Notice ~hat this time to cross a valley is
proportional to the reciprocal of the
square ofthe mutation rate. This is a very
large number, of the order of 1018 to 10 14

indicating that the mean time to cross a
selective valley can be unrealistically long.
The time is also proportional to the re­
ciprocal ofthe population size suggesting
that small population sizes will actually
slow down the time required to cross a
valley. This is in sharp contrast to models
of multilocus locus selection developed
by Wright (1970) in which the rate of
crossing ofselective valleys decreases with
population size. In our model it is the
total number of mutants that are pro­
duced each generation that is limiting the
:ate of evo~ution. This quantity clearly
mcreases WIth population size.

As in the. previous section we can plug
some plausible values into the mean time
to .g~t some idea of the genetic system's
ability to move two mutational steps
away. Using the same values for the pa­
rameters and assuming that S, = s, we get

i: ~ 5 X 108,

which is much longer than the time scale
of protein evolution. This suggests that
under this model molecular evolution will
come to a stand still if the only alleles
that are more fit than the currently fixed
allele are two or more mutational steps
away (and there are no neutral muta­
tions).

Assigning Relative Fitnesses

In this section we will describe a sto­
chastic process that approximately
models the burst ofevolution that occurs
with each environmental change. The
random variable representing the num­
ber of allelic substitutions that occur in
the ith burst of evolution has been de­
noted Xi in a previous section. We now
hope to learn something about the dis­
tribution of Xi by assigning fitnesses to
the alleles and using the results of the
preceding two sections to describe the dy­
namics.

Until now we have avoided the prob­
lem of actually assigning relative fitness­
es. l!~fortunately there is essentially no
empirical work that can guide us in the
assignments ofeither absolute or relative
values to a and the s; To circumvent this
problem we will assume that there exists
some underlying probability law that
governs the assignment offitnesses. This
is a common approach that has been used
recently by Kimura (1979) in a context
similar to this. The choice ofa particular
probability law does not appear to be very
critical smce we are only concerned with
the most fit of a large number of alleles.
In this setting, extreme value theory
guarantees that certain aspects of the re­
sults that we obtain will not depend on
the underlying distribution.

The mutational structure of DNA and
the dynamics of the preceding sections
suggest the following model for a burst
of evolution. Let us focus on the events
just after an environmental change that
affects the fitnesses ofthe alleles at a locus
that had stagnated in the previous en­
vironment (i.e., all neighboring se­
quences were less fit than the currently
fixed sequence). With the environmental
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TABLE 1. Simulation results for the burst model
ofevolution illustrating the effect of the position of
the previously most fit allele,}. Each mean is based
on 2,000 replicates and 1,000 neighboring se­
quences.

4

Normal
Mean steps 1.773 2.253 2.547
K 2.280 2.776 3.039
Mean final value 3.487 3.427 3.409

Exponential
Mean steps 1.739 2.207 2.467 2.702
K 2.250 2.704 2.953 3.154
Mean final value 8.413 8.135 8.154 8.226

change comes a new rank ordering that
is obtained by assigning fitnesses at ran­
dom to the alleles. This assignment can­
not be done in an independent fashion
because we would suppose that the en­
vironmental changes are somewhat sub­
tle so that the previously most fit allele
is more likely to be among the most fit
in the new environment than an allele
that had a very low fitness in the previous
environment. Thus we are concerned with
the distribution of the rank orders of al­
leles when the fitnesses of these alleles
are correlated from one environment to
the next. The mathematical theory of the
rank ordering ofcorrelated random vari­
ables, called the theory of concomitants
(see David et al., 1977), is not yet well
enough developed to provide a descrip­
tion of the rank orderings that will be
useful for our purposes.

Given the absence of an adequate the­
ory to describe the changes in the rank
orderings ofalleles with time we will pos­
tulate a process that appears to capture
the correlation structure that is required.
We will assume that with each environ­
mental change the previously most fit al­
lele will become the jth most fit allele
wherej can equal 2, 3, .... For example,
if j = 2 then with each environmental
change the most fit allele becomes the
second most fit allele in the new envi­
ronment.

With each environmental change we

choose m + 1 independent, identically
distributed random variables from some
probability law. These random variables,
representing the fitnesses ofthe currently
fixed allele and the m neighboring se­
quences, are then rank ordered and
named such that Y1 > Y2 > ... > Ym­

The correlation is added by stipulating
that the previously most fit allele is the
jth one from the top ofthese m + 1 ran­
dom variables. Of the j - 1 alleles that
are more fit than the jth random variable
we choose one to become fixed in the
population according the rules set forth
in the section on neighboring sequences.
That is, we choose allele i with proba­
bility

)-1

n. = (Yi - Jj)/~ (Yk - Jj),
k-l

i = 1, 2, ... , j - 1. (20)

This completes the first iteration ofthe
process. The newly fixed neighboring se­
quence will now generate m new neigh­
boring sequences with fitnesses drawn
from the same probability law as before.
Unlike the first iteration, the environ­
ment is not viewed as having changed
before these new neighbors are generated
and therefore the currently fixed allele
keeps its previous fitness. Of the m new
fitnesses a random number, N, will ex­
ceed the fitness of the currently fixed al­
lele where N = 0, 1, 2, ... , m. Among
the N that exceed the currently fitness of
the currently fixed allele choose one as
before and call it the currently fixed al­
lele.

This completes the second iteration of
the process. Further iterations occur until
N = 0 for some iteration. Thus there can
be anywhere from 1 to an infinite number
ofiterations before the process stagnates.
Each iteration results in an allelic sub­
stitution. The total number of iterations
is represented by the random variable X;,
the number of allelic substitutions asso­
ciated with a burst of evolution.

This process is well defined but seems
difficult to describe analytically. There­
fore I have resorted to computer simu-
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TABLE 2. Simulation results for the burst model of evolution illustrating the effects of changing the
number of neighbors. Each mean is based on 2,000 replicates and j = 3 in each case.

Neighbors 10 50 100 500 1,000

Normal
Mean steps 2.016 2.153 2.181 2.238 2.253
K 2.545 2.693 2.677 2.765 2.776
Mean final value 1.862 2.479 2.714 3.226 3:427

Exponential
Mean steps 2.096 2.154 2.201 2.226 2.207
K 2.561 2.681 2.767 2.712 2.704
Mean final value 3.661 5.251 5.893 7.467 8.135

lations to describe the random variable
Xi' The process is easily simulated, the
only additional information required is
the distribution to be used to assign the
fitnesses. Two series of simulations will
be presented, one using a normal density,
the other using an exponential density.
These two were chosen because of their
very different tail behavior. As will be
seen, we get essentially the same result
for both of them.

The simulations were performed for a
series of values for i. the rank order of
the previously most fit allele just after an
environmental change, and for m, the
number of neighboring sequences. The
results are displayed in Tables I and 2.

Table I illustrates the most important
aspect of the distribution of Xi' Notice
that for j in the range 2 to 5 that K varies
from about 2.3 to 3.2. This is very similar
to the values ofK suggested by the protein
sequence data. Notice also that the values
of K are essentially the same for the nor­
mal and exponential distributions. This
is a consequence ofa result from extreme
value theory due to Weissman (1978) that
the spacings between the top few order
statistics become independent and ex­
ponentially distributed random variables
as the number of order statistics grows.
Thus any well behaved unbounded prob­
ability distribution should give similar
results. The mean number of substitu­
tions in each burst varies between about
1.7 and 2.7 and is also insensitive to the
underlying probability distribution.

The final value of the random variable

does depend on the underlying proba­
bility distribution but its actual value is
of no particular interest for the process
that we are describing. However, differ­
ences in the value between different cases
is often instructive. Notice, for example,
the final value of the random variable
seems relatively insensitive to the value
of j. Biologically we would interpret this
to mean that the bursts of evolution re­
sult in about the same level of fitness for
the population no matter how poorly the
previously most fit allele does in the new
environment.

Table 2 illustrates the effects of differ­
ing numbers of neighboring sequences.
The remarkable aspect of these results is
that as few as 100 neighboring sequences
seems to be adequate to assure conver­
gence close to the extreme value limit.
Even fewer than 100 neighboring se­
quences gives results that are essentially
the same for both probability distribu­
tions.

In concluding this section it should be
emphasized that these results appear to
be very robust to the assumptions that
have gone into the simulations. Even
without any mathematics we can clearly
see that evolution should proceed in a
series of bursts. What the mathematics
provides is a quantitative estimate ofthe
effects of the bursts on the value of K.

The results thus far suggest that if the
previously most fit allele becomes the
second to fifth most fit allele of its im­
mediate neighbors in the new environ­
ment then we should observe a value of
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K similar to that seen in the sequence
data.

Implications of the Model
Some ofthe implications ofthis model

on questions of more general evolution­
ary interest are:

(i) What limits the rate of molecular
evolution?-The model suggest that this
question has a local and a global answer.
The genetic system appears to be capable
of responding to changes in the environ­
ment as long as neighboring sequences
are more fit then the currently fixed allele.
This response we could view as the "local
response" of one of the bursts of evolu­
tion. The time scale of this response is
probably ofthe order oftens to hundreds
of thousands of generations.

We would expect, however, that the
most fit sequence is completely inacces­
sible from the currently fixed allele be­
cause the average burst of evolution ap­
pears to go no more than two to three
steps. This represents an infinitesmimal
excursion in the space of all possible se­
quences. Thus the global answer is that
the structure of DNA and the low rate of
mutation limits the ability ofa species to
reach the most fit sequence.

At any point in time each locus will be
in one of two states, either stagnated or
waiting for the fixation of a more fit
neighboring sequence to occur. If the
mean time between environmental
changes for a typical protein is on the
order of 106 years then the fraction of
time spent waiting for the fixation of a
neighboring sequence will be about 10-3

to 10-2• Thus maybe one locus in a
hundred to one in a thousand will have
a more fit allele that is one mutational
step away from the currently fixed allele
that is more fit than the currently fixed
allele. This argument assumes, perhaps
naively, that the environmental changes
affected different loci are independent.

(ii) Should the rate ofevolution be con­
stant?-The process M(7) was assumed
to be stationary and this yields a constant
rate of evolution. The bursts produce a
process of evolution that can appear to

move in a non-constant fashion if one's
null model for evolution is a Poisson pro­
cess. Ifone's null modelis a point process
then the process may be viewed as mov­
ing at a constant rate. It is quite possible,
even likely, that the process of environ­
mental changes has not been stationary.
This could be due to systematic trends
in the climate or to the invasion ofa new
niche and subsequent radiation of a tax­
on. Such an event has been suggested by
Goodman et al. (1982) in their discus­
sions of hemoglobin evolution.

All models ofmolecular evolution that
are based on natural selection will nec­
essarily have some difficulty accounting
for the near constancy of evolutionary
rates. However it may well be that most
evolution is in response to an evolving
biological environment (as suggested by,
among others, Van Valen, 1974) and that
all members of the biological environ­
ment are faced with similar limitations
on their rates of evolution posed by the
mutational structure ofDNA. In such an
interacting system a relatively minor
forcing function, say climatic changes,
may keep the system moving while the
internal limitations will keep it moving
at a relatively constant rate. These are
necessarily nebulous ideas but are sugges­
tive of a promising direction to extend
the model.

(iii) Is evolution fundamentally a sto­
chastic process?- The answer to this
question is of course, yes. However, the
results presented here suggest two new
elements of this stochasticity. The first of
these is the randomness that results from
the fixation of one ofthe neighboring se­
quences with each iteration of the burst.
This is the element of randomness that
would be responsible for the correlation
between amino acid and codon frequen­
cies presented by King and Jukes (1969).
It also implies that two populations faced
with the same sequences of environ­
ments and the same initial genetic ma­
terial will be unlikely to respond to the
environmental changes by the same set
of allelic substitutions.

The second element of randomness is
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the variation in the burst size. This ele­
ment is responsible for the high variance
to mean ratio. It also poses some prob­
lems for statistical efforts to estimate hid­
den mutational changes in reconstruc­
tions of protein phylogenies. These
techniques sometimes assume that the
number of substitutions in a branch is
Poisson distributed. Our results suggest
that this assumption is far from accurate
if natural selection is responsible for the
evolution of proteins.

(iv) Is polymorphism a phase of mo­
lecular evolution?-In the neutral allele
model of polymorphism is viewed as a
phase of molecular evolution (Kimura
andOhta, 1971). Under the current mod­
el polymorphism appears to be essen­
tially uncoupled from the process ofmo­
lecular evolution. We have not discussed
polymorphism and will reserve detailed
comments for a future publication. Pre­
liminary considerations suggest the fol­
lowing scenario. With each environmen­
tal change it is possible that among the
neighbors of those alleles that are cur­
rently in the population will be a set that
can coexist by some form of balancing
selection. These may replace the pre­
vious set by a process exactly analagous
to that described for a non-polymorphic
system. The main new element that is
introduced by polymorphism is that there
will be more neighboring sequences
available on which selection can act. Oth­
erwise the process ofmolecular evolution
will proceed much as has been described
for the non-polymorphic model. Table 2
suggests that the consequences of having
more neighboring sequences available are
a greater number of steps with each burst
and a higher overall level of fitness as a
result.

(v) Are neutral mutations important in
evolution?-It should be emphasized that
the model that we have presented is just
one of many that could account for mo­
lecular evolution. We have presented no
evidence that selection is in fact operat­
ing on the sequences in nature. The only
argument that could be put forward in
favor ofthis model over the neutral allele

model is that it more easily accounts for
the high value of K. If there were a mix­
ture of neutral and selected sequences
then it is interesting to speculate that the
presence of neutral alleles in the popu­
lation will also have the effect of increas­
ing the number of neighbors and there­
fore the burst size and the level of
adaptation of the population.

One possibility is that the variation in
silent sites (e.g., many third positions in
codons or introns, etc.) is due to neutral
alleles whereas the variation in sites that
alter amino acids is due to natural selec­
tion. Ifthis were the case then the domain
of applicability of the results presented
in this paper would be exclusively with
those nucleotides that alter amino acids.

SUMMARY

A model of molecular evolution by
natural selection is described. The dy­
namics of the model are determined to a
great extent by the nature of the muta­
tional process ofDNA. This is due to the
very low nucleotide mutation rate that
effectively limits natural selection to those
alleles that differ from the currently fixed
allele by a single nucleotide. As a con­
sequence, it is shown that evolution
should proceed in a series of bursts if
natural selection is the main mechanism
for the change. A typical burst of evo­
lution is shown to involve about 1.5 to
2.5 allelic substitutions on average. One
consequence of these bursts is to elevate
the variance to mean ratio in the number
of substitutions per unit time to a level
as is commonly observed in the protein
evolution data. These results appears to
be very robust to many ofthe particulars
of the model because of the role played
by extreme value theory in determining
the fitnesses of the alleles.
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