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Abstract This paper presents new results from a detailed study of the structure of
autocatalytic sets. We show how autocatalytic sets can be decomposed into smaller
autocatalytic subsets, and how these subsets can be identified and classified. We
then argue how this has important consequences for the evolvability, enablement,
and emergence of autocatalytic sets. We end with some speculation on how all this
might lead to a generalized theory of autocatalytic sets, which could possibly be
applied to entire ecologies or even economies.

Keywords Origin of life · autocatalytic sets · evolvability · emergence · functional
organization

1 Introduction

Origin of life research seems divided between two paradigms: genetics-first and
metabolism-first. However, a common theme in both is the idea of autocatalysis. In
fact, a third alternative, that of collectively autocatalytic sets, was introduced more
or less independently several times [11,4,3], and used in later origin of life models
[21,5,16,14]. Furthermore, recent experimental advances in creating such sets in
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a laboratory setting [17,1,6,19] have sparked a renewed interest in autocatalytic
sets.

In this paper, we continue our own (theoretical) studies of autocatalytic sets.
In previous work [11,12,13,18,9,15,7,8,10], we used a mathematical framework to
investigate the probability of existence of autocatalytic sets under various condi-
tions (model parameters), to answer questions about the required level of catalysis
needed for autocatalytic sets to emerge, and we considered various model variants.
We also compared and contrasted our own work with other, related models and
methods (which we will not repeat here, but see, e.g., [7]), and presented results
that complement, but also go beyond what has been reported elsewhere so far.

Here, we present new results from a detailed study of the actual structure (as
opposed to merely the existence) of autocatalytic sets. In particular, we show
empirically, theoretically, and through an illustrative example, that autocatalytic
sets can often be decomposed into smaller subsets which themselves are autocat-
alytic, and how these subsets can be identified and classified. We then argue that
this structural decomposition of autocatalytic sets has important consequences for
their potential evolvability, how they can enable their own growth and also the com-
ing into existence of other autocatalytic (sub)sets, and how this can possibly give
rise to higher-level, emergent structures. Finally, we end the paper with some pro-
voking but plausible ideas of how the theory of autocatalytic sets, having started
in the context of the origin of life, might be generalized to a theory of functional
organization and emergence. Such a generalized theory of autocatalytic sets could,
as we hope and envision, perhaps even be applicable to ecology and economics.

2 Chemical reaction systems and autocatalytic sets

In previous work we introduced and studied a formal model of chemical reaction
systems and autocatalytic sets in the context of the origin of life problem [11,12,
13,18,9,15,7,8,10]. Here, we will only briefly review the relevant definitions and
results.

A chemical reaction system (CRS) is defined as a tuple Q = {X,R, C} consisting
of a set of molecule types X, a set of reactions R (where each reaction transforms
a set of reactants into a set of products), and a catalysis set C indicating which
molecule types catalyze which reactions. We also consider the notion of a food set
F ⊂ X, which is a subset of molecule types that are assumed to be freely available
from the environment. In one particular model of a CRS, known as the binary
polymer model [11,12,13], molecule types are represented as bit strings up to a
certain length n, reactions are simply ligation (“gluing” two bit strings together
into one longer one) and cleavage (splitting one bit string into two shorter ones),
and catalysis is assigned at random according to some parameter p (the probability
that a molecule type catalyzes a reaction). The food set consists of all molecule
types up to a certain length t� n.

Informally, an autocatalytic set (or RAF set, in our terminology) is now defined
as a subset R′ ⊆ R of reactions (and associated molecules types) in which:

1. each reaction r ∈ R′ is catalyzed by at least one molecule type involved in R′;
2. all reactants and catalysts in R′ can be created from the food set F by using

reactions only from R′ itself.
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A formal definition is provided in [9,8], where we also introduced a polynomial-
time (in the size of the reaction set R) algorithm for finding RAF sets in a general
CRS Q = {X,R, C}. Figure 1 shows an example of an RAF set that was found by
our algorithm in an instance of the binary polymer model with parameter values
n = 5, t = 2, and p = 0.0045.

10
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01100

1110

11100

11

Fig. 1 An example of an RAF set that was found by the RAF algorithm in an instance of the
binary polymer model. Molecule types are represented by black dots and reactions by white
boxes. Solid arrows indicate reactants and products coming in and out of a reaction, while
dashed arrows indicate catalysis. The food set is F = {0, 1, 00, 01, 10, 11}.

In [9] we showed computationally, and then proved theoretically in [15], that
only a linear growth rate in the level of catalysis f (i.e., the average number of
reactions catalyzed per molecule type) with the size of the largest molecules n,
suffices to get RAF sets with high probability in instances of the binary polymer
model. Furthermore, the level of catalysis only needs to be roughly 1 < f < 2, i.e.,
between one and two reactions catalyzed per molecule (for n at least up to 20),
which is a chemically realistic number. In [8,10] we studied a variant of the binary
polymer model where catalysis is based on a more realistic template-matching
constraint. However, the main results from the basic model remain the same and,
moreover, can be mathematically predicted [10].

Finally, we note that the RAF sets that are found by our algorithm are what
we refer to as maximal RAF sets (maxRAFs). However, a maxRAF could possibly
consist of several smaller (independent or overlapping) subsets which themselves
are RAF sets (subRAFs). If such a subRAF cannot be reduced any further without
losing the RAF property, we refer to it as an irreducible RAF (irrRAF). In [9] we
presented an extension of the RAF algorithm to find one (arbitrary) irrRAF within
a given maxRAF. These notions of subRAFs are relevant for what follows below.
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3 The structure of autocatalytic sets

In the original argument for the existence of autocatalytic sets in the binary poly-
mer model, it was assumed that when the probability of catalysis p is slowly
increased (for a given n), at some point an autocatalytic set will occur as a “giant
component”, i.e., containing all (or most of) the reactions in the reaction set R [11,
12,13]. This is similar, it was claimed, to the sharp phase transition observed in
percolation networks or random graphs. Furthermore, the proof that only a linear
growth rate in the level of catalysis f is sufficient to get RAF sets with arbitrary
high probability assumes that RAF sets contain the entire molecule set X [15].
However, as was already shown in [9,8], in practice these assumptions are stronger
than necessary. Here, we investigate this issue of the size and structure of RAF
sets in more detail.

3.1 Empirical results

First, we look at the relative size of RAF sets. For maxRAFs, we calculate the
relative size as the size (in number of reactions) of a maxRAF divided by the size
of the full reaction set R it was found in. For irrRAFs, we calculate the relative
size as the size of an irrRAF divided by the size of the maxRAF it is part of. For
various values of n in the binary polymer model, we measured these relative sizes
of maxRAFs and irrRAFs at a level of catalysis for which the probability of finding
(max)RAF sets (using our RAF algorithm) is around Pn = 0.5. We then averaged
this over a sample of instances of the model (given the practical computational
limitations, as the size of the reaction set R increases exponentially with n). Figure
2 shows the results.
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Fig. 2 The (average) relative size of maxRAFs and irrRAFs for increasing n and Pn ≈ 0.5.
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This plot clearly shows that maxRAFs are not necessarily giant components.
In fact, for smaller values of n the maxRAFs are only about 15% of the size of the
full reaction set, decreasing to about 6% for n = 16. Furthermore, irrRAFs tend
to be about half the size of a maxRAF for smaller values of n, quickly decreasing
to close to one quarter for n = 16 (with a continuing decreasing trend). This
seems to imply that maxRAFs indeed consist of multiple (possibly overlapping)
irrRAFs, plus perhaps a number of reactions that are part of the maxRAF but
not necessarily of any irrRAF.

3.2 Theoretical results

Next, we state several mathematical results (see Theorem 1 below) concerning
the structure of RAF sets, which confirm and formalize the implications that
follow from the empirical results. The first result shows that an RAF set may
indeed contain many irreducible RAF sets, in fact, possibly exponentially many
(see Fig. 3 for a simple example). One immediate consequence of this is that there
is no hope of devising a polynomial-time algorithm that can guarantee to find all

irrRAFs in an arbitrary RAF set (though an interesting, but still open question
is whether irrRAFs can be merely counted in polynomial time, or can be listed
by an algorithm which runs in polynomial time in the number of irrRAFs and the
size of the RAF set). We will return to this issue with another, but more positive
consequence (from an evolutionary point of view) with the example in Section 3.3.

a1 b1

c1

a′1 b′1
a′3

b′3 b′2

a′2

c2
a2

b2b3

a3 c3

r1

r′1

r′3

r3
r2

r′2

Fig. 3 An RAF set containing eight (overlapping) irreducible RAF sets, which illustrates the
type of construction used to create 2k irrRAFs (for k = 3) in the proof of Theorem 1(1).

For the second part we first need to introduce one more definition. A maximal

proper subRAF R′′ of an RAF R′ is a proper subRAF R′′ ⊂ R′ (i.e., R′′ is an
RAF and is contained in but not equal to R′) such that there is no other proper
subRAF R∗ ⊂ R′ with R′ ⊂ R∗ ⊂ R′′. Part 2 of Theorem 1 shows that the number
of maximal proper subRAFs of an RAF can only grow linearly with the size of the
RAF. Thus, although an RAF can have many minimal (i.e., irreducible) proper
subRAFs, it cannot have too many maximal proper subRAFs.
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The third part of Theorem 1 includes three related points. The first point will
be used (in Section 3.4) to show how we can represent all the subRAFs of an RAF
by constructing a (Hasse) diagram; this provides a convenient way to visualize how
the subRAFs sit inside each other. Next, we show there is an efficient (polynomial-
time) method to determine whether any given RAF set can be decomposed into
two (overlapping or disjoint) subRAFs. Together these two results provide a way
to describe the possible pathways through which any particular RAF set might
be built up by allowing subRAFs to combine in pairs, or to co-opt other reactions
(see also the example in Section 3.3). As a third point, we show that it is possible
to efficiently determine whether or not any particular reaction or, more generally,
any non-empty set of reactions, is “essential” within any given RAF, in the sense
that any subRAF of the original RAF must contain this given set of reactions.

The results described above are stated formally in the following theorem, the
proof of which is provided in the Appendix.

Theorem 1

1. There exist RAF sets R′ for which the number of irreducible RAF subsets is expo-

nential in the number of molecules and reactions in R′.
2. For any RAF set R′, the number of maximal proper subRAFs of R′ can never

exceed |R′|.
3. Given a catalytic reaction system, Q = (X,R, C), a food set F ⊂ X, and an RAF

R′ ⊆ R, there exist polynomial time (in |Q|) algorithms that solve the following

problems:

(i) generate a list of all the maximal proper subRAFs of R′;
(ii) determine whether or not R′ is the union of two proper subRAFs, and if so find

all such pairs of subRAFs;

(iii) for any given non-empty subset of R′, determine whether that subset is con-

tained in every subRAF of R′.

3.3 An illustrative example

To illustrate this idea of the decomposition of an RAF set into smaller subsets, we
provide a simple but illustrative example. Recall the maxRAF shown in Figure 1,
which consists of the following five reactions (the catalysts are shown above the
reaction arrows):

r1 : 10 + 0
01100−→ 100

r2 : 01 + 100
0−→ 01100

r3 : 10 + 1
0−→ 101

r4 : 11 + 10
101−→ 1110

r5 : 1110 + 0
101−→ 11100

The food set is F = {0, 1, 00, 01, 10, 11}, i.e., all molecules up to length t = 2.
This maxRAF can actually be decomposed into two independent subsets, both of
which are RAF sets themselves. The first subRAF is R1 = {r1, r2} and the second
subRAF is R2 = {r3, r4, r5}. These two subRAFs are shown in Figure 4.

The subRAFs R1 and R2 are independent in the sense that they do not share
any reactions. The only overlap is in the two food molecules 0 and 10 which are used
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Fig. 4 The two independent subRAFs R1 (left) and R2 (right) of which the maxRAF shown
in Figure 1 is composed.

in both subRAFs as reactants and a catalyst. Note, furthermore, that subRAF R1

is an irreducible RAF. None of the two reactions r1 or r2 can be removed without
losing the RAF property. However, subRAF R2 is not an irrRAF, as first r5 and
then r4 can be removed without losing the RAF property, leaving an irrRAF
consisting of just one reaction (r3, in which both reactants and the catalyst are
food molecules). We discuss further details and implications of this example in
section 4 below.

3.4 Classifying autocatalytic subsets

The collection of subRAFs of any RAF R form a partially ordered set (i.e., a poset)
under inclusion, and it is convenient to visualize this poset by its associated Hasse

diagram [2]. This is a directed graph whose nodes are labeled by subRAFs of R,
with the top node (root) labeled R and the bottom nodes (leaves) labeled by the
irrRAFs of R. In this diagram we place an (upward oriented) edge from node R′′
to node R′ precisely if R′′ is a maximal proper subRAF of R′. For example, the
Hasse diagram of the subRAFs of the 5-reaction maxRAF (from Figure 1) is shown
in Figure 5. This Hasse diagram displays all the possible ways that the maxRAF
can be built up from simpler subRAFs, starting from one or more irrRAFs.

In general, the poset of subRAFs of an RAF set can be very large. For example,
as we have shown in Theorem 1(1), an RAF set may have exponentially many
irrRAFs, and each will appear as a separate node at the bottom of the Hasse
diagram. Thus, there is no algorithm for constructing the Hasse diagram of the
subRAFs that is guaranteed to run in polynomial time in |Q| for all cases. However,
Theorem 1(3(i)) provides us with the next best thing – namely, an algorithm that
will be fast when the Hasse diagram is not too large. We formalize this as follows;
a proof is provided in the Appendix.

Corollary 1 Given a catalytic reaction system, Q = (X,R, C), a food set F ⊂ X,

and an RAF R′ ⊆ R, there is an algorithm for constructing the Hasse diagram of the

poset P of subRAFs of R′ whose running time is polynomial in the size of P and R′.
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{r1, r2}

{r1, r2, r3}

{r1, r2, r3, r4}

{r3, r4}

{r3}

{r1, r2, r3, r4, r5}

{r3, r4, r5}

Fig. 5 The Hasse diagram of the poset of subRAFs of the maxRAF shown in Figure 1.

4 Evolvability, enablement, and emergence

The “decomposability” of RAF sets, as detailed in the previous section, actually
gives rise to a possible mechanism for evolution to happen in autocatalytic sets.
For example, initially the two subsets {r1, r2} and {r3} in the above example
could exist independently as irreducible autocatalytic sets. Over time, reaction
r4 and then reaction r5 could be “incorporated” into the second subset, giving
rise to the two independent subRAFs R1 and R2, which could then eventually
merge into one larger RAF set consisting of all five reactions (as in Figure 1). This
process of combining, splitting, and recombining different subRAFs (presumed to
be compartmentalized replicating entities) can give rise to inheritance, mutation,
and competition, i.e., indeed evolvability, as was convincingly shown only very
recently [20]. It is in this context that a possibly exponential number of irrRAFs
that can exist within a given maxRAF has an important (and positive, in terms
of evolvability) consequence. Thus, our results above combined with those of [20]
open up new and exciting possibilities, and warrant further investigations into the
structure of (sub)RAFs under various conditions.

Furthermore, next to evolvability, the example from the previous section also
illustrates how RAF (sub)sets can enable their own growth or even each other’s
coming into existence. Returning to the subRAF R2 in Figure 4 and the irrRAF
{r3} it contains, suppose we start with only molecule types 0, 1, and 10 present
(all of which are food molecules). Then the irrRAF {r3} is a self-sustaining auto-
catalytic set by itself. If we now add molecule type 11 (another food molecule) to
the mix, then this minimal autocatalytic set immediately grows into a 2-reaction
RAF, as reaction r4 can now also proceed (given that it is catalyzed by molecule
type 101 which was already produced by reaction r3). And, once the product of
reaction r4 (molecule type 1110) is created, reaction r5 is automatically added to
the set as well, giving rise to the 3-reaction subRAF R2.

Finally, imagine that molecule type 11 is not a food molecule, but some other
molecule type that is actually produced by, for example, subRAF R1. Then the
existence of R1 enables the growth and coming into existence of the full subRAF
R2. Hence, (sub)RAF sets can be (possibly mutually) dependent on each other,
and the existence of one can create the required conditions for another to come into
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existence (as was also already observed in [20]). Taking this one step further, one
could imagine a collection of mutually dependent RAF sets forming a meta-RAF
set: one set enabling (catalyzing) the existence of another, in mutually beneficial
ways. In other words, self-sustaining, functionally closed structures can arise at a
higher level (an autocatalytic set of autocatalytic sets), i.e., true emergence. And
this, in turn, opens up the possibility of open-ended evolution.

5 A generalized theory of autocatalytic sets

We end this paper by discussing an as yet speculative, but potentially powerful and
far-reaching idea. By definition, RAF sets are self-sustaining entities (supported
by a food set) that exhibit catalytic closure. As we have argued here (largely
inspired by [20]), they can give rise to evolvability, by virtue of their property
of being decomposable into (possibly exponentially many) subsets. As such, the
Hasse diagram of a (maximal) RAF set, as described above, can be interpreted
as all the possible “paths” that evolution could potentially follow by combining,
splitting, and recombining RAF subsets into many variants. Furthermore, as also
argued here, RAF sets can enable their own growth, or even the coming into
existence of other RAF sets, creating mutually dependent collections of RAF sets,
and possibly emergent meta-RAF sets, thus giving rise to open-ended evolution.

So, if collections of molecules and chemical reactions between them, “facili-
tated” by catalysis, can form autocatalytic sets, perhaps even at several emergent
levels, then this begs the question: “Could we consider a complete cell as an (emer-
gent) autocatalytic set?” We argue that this may indeed be the case, particularly
for autotrophs. And once autotrophs existed, they enabled the coming into ex-
istence of heterotrophs, i.e., collections of mutually dependent cells that feed on
each other’s waste or side products (or simply on each other). Perhaps it is not
too far-fetched to think, for example, of the collection of bacterial species in your
gut (several hundreds of them) as one big autocatalytic set.

Taking this a step further, why not consider any ecology of mutually dependent
organisms as an emergent autocatalytic set, with one (group of) species enabling
the evolution of (i.e., creating niches for) other, new, species. And what about
the economy? If we view the process of transforming raw materials (reactants)
into products as a “production function” (the equivalent of a chemical reaction),
with objects like hammers, conveyor belts, and factory machines as “facilitators”
(the equivalent of catalysts, which themselves are products of other production
functions), perhaps we can also view the economy as an (emergent) autocatalytic
set, exhibiting some sort of functional closure. And, as with an ecology, the exis-
tence of one or more autocatalytic subsets (economic agents such as companies or
government organizations) enables the coming into existence of new ones.

We admit, once more, that all this is perhaps rather speculative, but at the
same time we believe that these ideas are worth pursuing and developing further.
In fact, the theory of autocatalytic sets, as we have only begun to formulate in the
context of the origin of life, could perhaps be generalized into a theory of func-
tional organization, and possibly also of emergence (collections of autocatalytic
sets forming meta-autocatalytic sets). If so, this would open up multiple new ar-
eas of research, with many exciting prospects. As such, a “generalized theory of
autocatalytic sets” might indeed fulfill such a promise.
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Appendix

Proof of Theorem 1:

Part 1: First, consider a directed graph G that has 2k vertices r1, r2, ..., rk, and
r′1, r

′
2, ..., r

′
k. For each i = 1, 2, . . . , k − 1, place a directed edge from ri to ri+1 and
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also one from ri to r′i+1. Next, for each i = 1, 2, ..., k−1, place a directed edge from
r′i to ri+1 and also one from r′i to r′i+1. Finally place directed edges from rk back
to r1 and to r′1; similarly place directed edges from r′k back to r1 and to r′1.

Notice that the number of minimal directed cycles in this digraph is 2k, since
we have complete freedom to select ri or r′i at each step in the cycle, and we must
select one of them (to get a cycle) but not more than one (to get a minimal cycle).

We now use this graph to construct a RAF set that has exponentially many
irrRAFs as follows. Associate with ri the reaction ai + bi → ci and with r′i the
reaction a′i + b′i → ci, where:

(i) the ai, bi, a
′
i, b
′
i and ci are all distinct from each other (and across different

choices of i there is no repetition), and
(ii) the ai, bi, a

′
i, b
′
i are all in the food set F (for all i).

For the catalysis set C, we let ci catalyze ri+1 and r′i+1 (for i = 1, 2, . . . , k− 1). In
addition, let ck catalyze r1 and r′1. Figure 3 illustrates this RAF set for the case
k = 3.

The irrRAFs in this resulting RAF set are now in one-to-one correspondence
with the minimal directed cycles of the graph G described above, and there are
2k such minimal cycles, but only 2k reactions and 5k molecules. So, the number
of irrRAFs is exponential in the size of the RAF set. Notice that this construction
can be carried out within the binary polymer model.

Part 2: For an arbitrary subset R′′ ⊆ R, let s(R′′) denote the (possibly empty)
subset of R obtained by applying the RAF algorithm to R′′ and F , and let R′′6=∅
be the set of reactions r in R′′ for which s(R′′ − {r}) 6= ∅. We first establish the
following result:

Claim 1: If R′ is any RAF, then R′′ is a maximal proper subRAF of R′ if and only
if

(a) R′′ = s(R′ − {r}) for some reaction r ∈ R′6=∅, and

(b) R′′ is not strictly contained within any other set of type (a).

To verify this claim, suppose that A is a maximal proper subRAF of R′. Then
there is at least one reaction r ∈ R′−A. Notice that, since A ⊆ R′−{r}, s(A) = A

is a non-empty subset of s(R′ − {r}); moreover s(R′ − {r}) is a strict subRAF of
R′ since s(R′ − {r}) does not include r while R′ does. Thus, since A is a maximal
proper subRAF of R we have

A = s(A) = s(R′ − {r}),

and so (a) holds. Property (b) now follows by the maximality assumption.
Conversely, suppose that (a) and (b) hold for R′′. Then R′′ = s(R′ − {r})

is nonempty and so s(R′ − {r}) is a proper subRAF of R′, and if it were not a
maximal proper subRAF of R′ then, from the first part of the proof s(R′ − {r})
would need to be strictly contained within s(R′−{r′}) for some reaction r′ ∈ R′6=∅,
and this is impossible since we are assuming that (b) holds.

From Claim 1, the number of maximal proper subRAFs is at most the number
of sets of the form s(R′ − {r}) for r ∈ R′, and there are at most |R′| such sets
across the possible choices of r from R′.
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Part 3: Part (i) follows directly from Claim 1, since the collection of RAF sets
{s(R′ − {r}) : r ∈ R′6=∅} can be computed in polynomial time, and property (b) in
Claim 1 can then also be checked in polynomial time.

Part (ii) also follows from Claim 1, since this shows that R′ is union of two
proper subRAF if and only if

R′ = s(R′ − {r1}) ∪ s(R′ − {r2}) (1)

for some pair of distinct elements r1, r2 of R′6=∅.
From this, it is clear how to obtain a polynomial time algorithm: first construct

the set R′6=∅, and, provided this set is non-empty, search for all pairs r1, r2 ∈ R′6=∅
for which Eqn. (1) holds; for each such pair we can set Ri := s(R′ − {ri}), for
i = 1, 2 so that R′ = R1 ∪ R2. If no such pair r1, r2 exists (or if R′6=∅ is empty),

then report that R′ cannot be decomposed further. This completes the proof of
the part (ii).

For part (iii), it suffices to verify the following:

Claim 2: If R′ is any RAF set and R0 is any non-empty subset of R′ then R0 is
contained within every subRAF of R′ if and only if s(R′ −{r}) = ∅ for all r ∈ R0.

To verify this claim, first suppose there exists r ∈ R0 with s(R′ − {r}) 6= ∅. Then
s(R′ − {r}) is a subRAF of R′ and yet RAF s(R′ − {r}) does not contain R0,
since s(R′ − {r}) is a subset of R′ − {r} and so does not does contain r ∈ R0.
Conversely, suppose there exists a subRAF R′′ of R′ which does not contain R0.
Select any reaction r ∈ R0 −R′′. Then R′′ ⊆ s(R′ − {r}) and so s(R′ − {r}) 6= ∅.
This establishes Claim 2, as required, and completes the proof.

Proof of Corollary 1: The algorithm constructs the Hasse diagram from the top
down, starting from the single node R′. We apply Part 3(i) of Theorem 1 to list
all the maximal proper subRAFs of R′, and then place edges from each of these to
R′ (if R′ has no maximal proper subRAFs then R′ is irreducible and we leave the
node as it is). Now we repeat this step recursively on these subRAFs, introducing
edges as before, and also identifying any two (or more) nodes labeled by the same
subRAF. We continue in this way until the network can be extended no further,
in which case all the nodes with no children comprise the set of irrRAFs of R′.

The resulting network N that we have constructed contains all the nodes of the
Hasse diagram of the poset (i.e. it contains all the subRAFs of R′); moreover, the
edge set is a subset of the edges in the Hasse diagram. This last claim needs a short
proof: if we have constructed an edge in N from R1 to R2, where R1 ⊂ R2 we need
to show that there is no other path in N from R1 to R2 via a sequence of increasing
subRAFs (which would make the edge (R1,R2) redundant). Suppose there were
such a second path, and let (R3,R2) be the last edge on this path. Then, referring
to Claim 1 (in the proof of Part 2 of Theorem 1),R1 = s(R2−{r}) would be strictly
contained in R3 = s(R2 − {r′}) for some reactions r, r′ and this is forbidden in
allowing R1 to be selected as a maximal proper subRAF of R2.

Thus, each edge in N will be present as an edge in the Hasse diagram. Moreover,
all edges in the Hasse diagram are present in N , for suppose that in the Hasse
diagram there is an edge from R1 to R2, where R1 ⊂ R2. Then R1 must be
a maximal subRAF of R2 and so, by construction, the algorithm inserts an edge
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from R1 to R2 during the step at which the subRAF R2 and its maximal subRAFs
are considered.

In summary, we have verified that the algorithm described constructs exactly
the Hasse diagram of subRAFs of R′.
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