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Mutually catalytic sets of simple organic molecules have been
suggested to be capable of self-replication and rudimentary
chemical evolution. Previous models for the behavior of such
sets have analyzed the global properties of short biopolymer
ensembles by using graph theory and a mean field approach. In
parallel, experimental studies with the autocatalytic formation
of amphiphilic assemblies (e.g., lipid vesicles or micelles) dem-
onstrated self-replication properties resembling those of living
cells. Combining these approaches, we analyze here the kinetic
behavior of small heterogeneous assemblies of spontaneously
aggregating molecules, of the type that could form readily
under prebiotic conditions. A statistical formalism for mutual
rate enhancement is used to numerically simulate the detailed
chemical kinetics within such assemblies. We demonstrate that
a straightforward set of assumptions about kinetically enhanced
recruitment of simple amphiphilic molecules, as well as about
the spontaneous growth and splitting of assemblies, results in
a complex population behavior. The assemblies manifest a
significant degree of homeostasis, resembling the previously
predicted quasi-stationary states of biopolymer ensembles
(Dyson, F. J. (1982) J. Mol. Evol. 18, 344 –350). Such emergent
catalysis-driven, compositionally biased entities may be viewed
as having rudimentary ‘‘compositional genomes.’’ Our analysis
addresses the question of how mutually catalytic metabolic
networks, devoid of sequence-based biopolymers, could exhibit
transfer of chemical information and might undergo selection
and evolution. This computed behavior may constitute a dem-
onstration of natural selection in populations of molecules
without genetic apparatus, suggesting a pathway from random
molecular assemblies to a minimal protocell.

The potential prebiotic synthesis of diverse organic com-
pounds has been previously demonstrated by experiments

(1–3). Yet, bridging the gap between organosynthesis and the
emergence of self-replication and inheritance has remained a
major challenge (4, 5). One school of thought centers on
individual molecules endowed with a capacity for self-
replication, a feat that often necessitates careful engineering of
complex chemical structures (6–9). Mathematical analyses (10–
12) and experimental testing (13–16) of in vitro evolution focus
on nucleic acid polymers, whose de novo abiotic generation is
considered by many as improbable (17).

A fundamentally different approach has envisaged primor-
dial self-replication as the collective property of ensembles of
relatively simple molecules, interconnected by networks of
mutually catalytic interactions (4, 18–26). Within such assem-
blies, molecules may be held together by noncovalent inter-
actions (23, 27–29). The experimental demonstration that
amphiphilic assemblies display self-replication behavior (30–
32) has led to increasing theoretical interest in this approach
(32–35).

Critics have argued that noncovalent assemblies might lack
the capacity of storing and transferring information. There-
fore, they could not undergo chemical selection and evolution
in the absence of informational biopolymers (13). Yet, con-

crete models of self-sustaining metabolism without encoding
biopolymers have been explored (4, 20–22, 36). One of these
(4, 20), a quantitative embodiment of Oparin’s prebiotic
evolution scenario (37), has analyzed the homeostatic behavior
of an ensemble of molecules through a state vector that
undergoes step-wise changes. The time-dependent distribution
of molecular populations was computed by using a transition
probability matrix. The existence of quasi-stationary (homeo-
static) states (QSSs) was formally related to the average
catalytic properties of the molecular constituents through a
mean field approximation.

We use here computer simulations based on the Graded
Autocatalysis Replication Domain (GARD) model (38, 39) to
analyze the kinetic behavior of mutually catalytic heterogeneous
amphiphilic assemblies. Under nonequilibrium conditions, these
are shown to spontaneously attain QSSs with high compositional
information and a capacity to undergo self-replication and
mutation-like changes.

Results
Compositional Assemblies. The compositional state of a noncova-
lent molecular assembly is defined by an NG-dimensional vector
n, whose components ni are the internal counts of different
molecular types (NG is the molecular repertoire size). The
time-dependent change of the composition is dictated by

dn(t)ydt 5 F[n(t)] [1]

where F is a function governed by the endogenous chemical
kinetics, in analogy to previously explored formalisms for mul-
ticomponent systems (20, 40, 41).

For two compositional assemblies, p and q, a degree of
similarity is defined as the scalar product

H(np,nq) 5 vpzvq , [2]

where v 5 nyn is a normalized compositional vector (n is the
norm of n). For any process leading from np to nq, H represents
the time-related compositional change, with H 5 1 denoting
perfect homeostasis, and H 5 0 indicating orthogonality, i.e., a
large change of compositional state.

In the realm of large assemblies, i.e., N..NG (N 5 Sni is the
assembly size), all randomly formed assemblies have nearly
identical n, and H'1 is trivial. The analyses below therefore are
performed under small assembly and large repertoire conditions
(N,NG) (cf. refs. 42 and 43) whereby randomly formed assem-
blies are nearly orthogonal. In this context it is helpful to quantify
an assembly’s information content in a way analogous to that
used for ensembles of biopolymer sequences (12, 41). We use a
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measure of compositional bias I, related to the improbability of
spontaneous formation, and therefore also to compositional
entropy:

I 5 O
i51

NG

log~ni!!/log N! [3]

A Kinetic Model. We consider the behavior of diverse lipid-like
amphiphilic molecules of the kinds formed in the laboratory or
under simulated prebiotic conditions (2, 3, 35, 44). These will
spontaneously aggregate in an aqueous medium to form molec-
ular assemblies governed by hydrophobic interactions (27, 45). A
central assumption of the present model is that compounds
already present within an assembly may enhance the rate of
joining and leaving of new molecular species. For large NG
values, this will result in a complex mutually catalytic network
(cf. refs. 24, 46, and 47). Catalyzed joining may be akin to
catalyzed ‘‘f lipping’’ of molecules between two leaflets of a lipid
bilayer (48). In future embodiments of the present model,
assembly formation could involve catalyzed covalent changes,

A

B

C

D

Fig. 1. Results of computer simulations for the kinetics of spontaneous
aggregation in amphiphilic assemblies. An initial assembly was seeded ran-
domly by choosing Nmin individual molecules out of a pool containing nTOT

molecules of each of NG possible types. Here NG 5 100, nTOT 5 1,000, Nmin 5 40.
A Monte Carlo type method was used for performing discrete stochastic
changes in the assembly, as dictated by Eq. 4, and by using methods as
described (68). At each time step, the change in the count of molecules of each
species (Dni) was calculated by random sampling from a Poisson distribution
with average Fi(n)Dt, where Dt defines the time scale of the process. In the
results presented here Dt 5 0.05 sec. The logarithms of the rate enhancement
factors bij were sampled from a normal distribution [used as a continuous
approximation for the binomial distribution (57)] with an average m 5 24 and
a SD s 5 4. These numerical parameter values were selected so that the
resultant rate enhancement would conform with an experimentally based
distribution derived from multiple reported data sets for lipid micelle catalysis
(52). The molar fractions of free molecules of kind i is defined as ri 5 (nTOT 2
ni)yNG. For the forward and backward reaction rates we use the values kf 5 10-2

and kb 5 10-5 sec-1 (for simplicity, all molecules are assumed to have identical
uncatalyzed rate constants, and to differ only in their mutual rate enhance-
ment properties). The program was written for MATLAB, version 5 (Mathworks,
Natick, MA). The detailed results of the computer simulations are available on
line at http:yyool.weizmann.ac.ilyPNAS2000. (A) The time dependence of the
molar fraction niyN for each species i, in an assembly whose growth is limited
only by the finite supply of molecules (Upper). Because all of the species are
thermodynamically equivalent, they reach the same molar fraction after a
certain time. In the transient the random network of mutual rate enhance-
ments determines significant and nontrivial differences among the various
molecular types. The change of assembly size N with time is shown (Lower): the
initial increase is nearly exponential, leveling off to zero growth as the
external molecular supply is exhausted and equilibrium is reached. (B) The
change of the similarity values H (Eq. 2) with time. The red line depicts H values
relative to the asymptotic composition n* reached by an assembly that forms
and expands indefinitely with unlimited supply of all molecular species ni. n*
represents the asymptotic steady-state solution of Eq. 4. The three thin lines
measure the similarity to the three main composomes of Fig. 3. (C) The
time-dependent behavior of a system similar to that in A and B, but with an
added process of splitting the assembly when its size reaches 2Nmin. The
splitting is performed by randomly dividing such an assembly into two daugh-
ter assemblies of size 'Nmin each. The count of each molecular species in a
daughter assembly is sampled from a binomial distribution with ni trials and
probability 0.5. In addition, a constant population condition (11) is imple-
mented by decomposing one randomly selected assembly after each splitting
event. This is done by breaking the chosen assembly into its monomeric
constituents and replenishing the external species concentrations ri. The
change of assembly size N with time, indicating the periodical splits, is shown
(Lower). (D) The analysis of H relative to specific compositions for the same
simulation shown in C. The initial random assembly proceeds through rela-
tively abrupt transitions from one composome to another. Composomes are
marked as C1 (green), C2 (magenta), and C3 (blue) (see Fig. 3).
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comparable to those observed for accelerated vesicle formation
(31, 49) and other lipid catalysis reactions (50–52).

For computer simulations of the dynamics of such molecular
assemblies, we use chemical kinetics rules based on the previ-
ously proposed Graded Autocatalysis Replication Domain
(GARD) model (38, 39). Accordingly, the time-dependent
changes in the composition of an assembly may be described by
NG differential equations (Eq. 1). The function F could in
principle be deduced by ab initio computations for the interac-
tion within each molecular pair, by using, for example, force field
equations (53–55). However, because the modeled system may
contain thousands of different compounds, for which a detailed
knowledge is lacking, it is more advisable to use a statistical
approach (56). Such an analysis may be based on a previously
proposed probabilistic formalism for ligand-receptor interac-
tions (57) as described (34, 38, 56, 58).

The minimal kinetic model pursued here assumes that the rate
of energetically favorable entry of an extraneous molecular
species into a preformed assembly is enhanced to some degree
(even very small) in a concentration-dependent way by every
type of molecule present inside the assembly. Thus the function
F assumes the specific form

Fi~n! 5 ~kfriN 2 kbni!S1 1
1
N O

j51

NG

bijnjD ~i 5 1 . . . NG!, [4]

where kf and kb are, respectively, the basal forward and backward
reaction rates (with kf.kb signifying spontaneous aggregation).
Although more elaborate kinetic models exist for micelle for-
mation (32, 54, 59), we use here a highly simplified formalism,
which assumes that a compound i joins an assembly with a
probability proportional to its external free concentration ri and
to the total size of the assembly N. The ensuing logistic growth
behavior (60) may be shown to be equivalent to that of the
original Graded Autocatalysis Replication Domain (GARD)
model (39). Mutual rate enhancement exerted by molecule type
j on molecule type i is represented by the element bij of an NG 3
NG matrix. The choice of rate enhancement distribu-
tion characteristics is guided by experimental results for lipid
catalysis (52).

The typical simulated behavior of a molecular assembly, as
dictated by Eq. 4, is shown in Fig. 1 A and B. It may be seen that
if an assembly is allowed to form and grow in a finite pool of
compounds, i.e., in a closed system, the molar fractions of some
components increase temporarily. Thus, the compositional vec-
tor n as well as the similarity value H trace a complex trajectory,
transiently passing through highly idiosyncratic compositions,
but finally decaying to an equimolar equilibrium composition.
Although the transient composition is kinetically dictated by the
values of the mutual rate enhancement factors bij, the final state
is related only to the ratio of the basal rate constants, i.e., to
thermodynamic equilibrium parameters.

QSSs. Next, we explored the behavior of the system when it is kept
far from thermodynamic equilibrium. Under conditions of un-
limited supply and unlimited growth, the molar fractions niyN
reach a single nontrivial asymptotic stationary state n* (see Fig.
1 B and D). This is observed also for the linear equation dnydt 5
Bn, with Bij 5 kfri(1 1 bij), obtained as an approximation from
Eq. 4 by assuming kb 5 0 and ri 5 constant. This equation has
a single attractor, which corresponds to the eigenvector with the
highest (real and positive) eigenvalue, lmax (cf. ref. 47).

A more interesting nonequilibrium behavior is observed when
the growing assemblies undergo disruption by processes akin to
those experimentally imposed by surface tension or turbulence
(31, 35, 61, 62). This perturbation serves as an external free
energy input, as it regenerates high free energy water-dispersed

molecules from the thermodynamically favorable assemblies. In
the computer simulations, when an assembly reaches a maximal
size, it undergoes splitting, by randomly dividing the molecular
components between two daughter assemblies. Assembly pop-
ulation growth is regulated according to a constant population
rule (Fig. 1 C and D and refs. 10 and 11).

A

B

Fig. 2. A time correlation matrix for H values (Eq. 2), where the ordinate and
the abscissa represent np and nq, compositional vectors at different points in
the time-dependent evolution of a particular assembly. In this case H for nearly
disposed time steps assumes the meaning of degree of homeostasis. Red colors
signify higher H value (bar on right). (A) The H matrix for the run shown in Fig.
1 C and D. The four main red squares around the diagonal signify time intervals
in which the composition does not undergo major changes (QSSs). The bars
labeled C1, C2, and C3 are defined by the maximal similarity between the
composition at a given time point and one of the three major composomes of
Fig. 3. Intercomposome dissimilarity is displayed as blue off-diagonal areas
(low H values). A statistical analysis of the lifetimes of different composomes
revealed an exponential distribution, probably related to the Poissonian
nature of the mutation-like compositional changes. In computer simulation
that encompass 20,000 growth and split steps, the following prevalences were
observed: C1, 0.13; C2, 0.37; C3, 0.50. (B) The influence of different initial
conditions is seen in a different run with the same kinetic parameters but with
a different initial composition. The H matrix displays off-diagonal red rectan-
gles, representing compositions that emerge more than once.
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Assembly splitting results in a simple form of compositional
inheritance (cf. ref. 42), whereby molecular compositions gen-
erally are preserved from one ‘‘generation’’ to another. There
are also mutation-like compositional changes inherent to the
underlying kinetics of a molecular joining process in complex
assemblies. It is demonstrated that inheritance is more accurate
in cases where the parent assembly tends to grow homeostatically
and have a high information content I (cf. ref. 56). The graded
replication fidelity is quantified here by computing an average H
value for a parent assembly versus both daughter assemblies (see
Fig. 4A).

Governed by the processes of splitting and decomposition, the
system is observed to pass through a set of QSSs (4, 20, 61–64)
(Figs. 1 C and D and 2). Such states are stable for time intervals
that encompass numerous growthysplitting cycles, constituting
local attractors in compositional space. Such persistent increases
in the molar fractions of certain components are in contrast to
the transient increases seen without splitting. However, because
of the mutation-like fluctuations introduced through the sto-
chastic splitting of small assemblies, abrupt transition from one
QSS to another may occur. Under the above-mentioned linear
approximation of Eq. 4, these multiple QSSs may be shown to be
related to eigenvalues of the matrix B, which have a positive real
part in the vicinity of lmax.

Each of the QSSs is characterized by a different, highly
unusual ‘‘compositional genome,’’ or ‘‘composome’’ (Fig. 3).
They may be regarded as different mutually catalytic networks,
or metabolic pathways, encompassing different subsets of com-
pounds derived from the global chemistry (Fig. 3 Right). The red

square patches in the H correlation matrix (Fig. 2) represent
QSSs, i.e., time spans in which the normalized compositional
vector n remains rather constant, corresponding to plateaus of
high H values (Fig. 1D), a hallmark of homeostatic behavior.
Different runs with the same bij parameters, but with different
initial composition yield different time courses and H correlation
matrices (compare Fig. 2 A and B). However, in numerous
different runs, the same composomes are observed with specific
time-averaged fractional incidences (Fig. 2 A, legend).

When different values of the rate enhancement matrix bij or of
the basal kinetic parameter are used, each parameter set results in
a different set of composomes. This behavior, however, seems to

Fig. 3. The compositions and ‘‘metabolic’’ networks for the three compo-
somes of the previous figures. A fuzzy c-means clustering algorithm of MATLAB

was applied to a data set of 1,000 compositions sampled immediately after
split events. (Left) Histograms represent normalized molar fractions at the
cluster centers. (Right) The respective ‘‘metabolic’’ networks, where the width
of each arrow represents the effective strength of the catalytic enhancement,
calculated as njzbij (arrows with njzbij,20 are omitted).

Fig. 4. Probability distributions for assembly characteristics as a function of
the degree of mutual rate enhancement. b 5 0 indicates no catalysis; medium
and high catalysis (m 5 26 and m 5 24, respectively) represent b matrices
sampled from normal distributions of the rate enhancement factors with the
indicated mean and a SD of 4 (see legend to Fig. 1). Each distribution is
computed for 4,000 assemblies, and values are sampled immediately after split
events. (A) The homeostasis parameter H computed for pairs of parent and
progeny. As the mutual rate enhancement is increased, H values shift form
0.65 6 0.07, corresponding to random similarity values, through 0.81 6 0.10
for low catalysis and 0.88 6 0.10 for high catalysis, showing that the denser
catalytic networks also are characterized by a higher level of average ho-
meostasis. This finding indicates that a larger fraction of the assemblies tend
to transmit their unique composition to their progeny. (B) The information or
compositional bias parameter I. When there is no catalysis, I assumes very low
values (0.05 6 0.02), corresponding to low-information assemblies near ther-
modynamic equilibrium. The introduction of mutual rate enhancement leads
to an appreciable increase in the information content to 0.19 6 0.07 (m 5 26)
and 0.34 6 0.10 (m 5 24) (the maximal value of I is 1).
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depend critically on the distribution for the bij values. No compo-
somal QSSs are observed, for example, when a normal probability
density is used instead of a lognormal one (D.S., unpublished work).
As the average values of bij are augmented, the assemblies statis-
tically show higher parent-progeny similarity as estimated by the
parameter H (Fig. 4A), as well as increased values of the informa-
tion parameter I (Eq. 3, Fig. 4B). This is a quantitative demonstra-
tion that networks of mutual rate enhancement propagate their
high information content, i.e., manifest replication-like properties.
For bij 5 0 the simulated assembly decays to an equilibrium
composition equal to that of the external medium. This finding is
consistent with the notion that nonequilibrium conditions are a
prerequisite for obtaining an intricate chemical behavior reminis-
cent of life phenomena (65, 66).

Assembly Population Dynamics. A question pertinent to the rele-
vance of compositional assemblies to prebiotic scenarios is whether
they may potentially undergo natural selection. Three relevant
properties already have been indicated: (i) that such assemblies are
capable of storing information; (ii) that they are capable of under-
going compositional transitions resembling the accumulation of
mutational changes in a sequential genome; and (iii) that the
assemblies may generate progeny by undergoing homeostatic ex-
pansion and splitting, partially preserving their compositional con-
stitution. It remains to explore the behavior of compositional
assemblies under conditions that allow the competitive coexistence
of numerous noncovalent aggregates in a given system.

For the population behavior simulations, several assemblies
are seeded and are allowed to undergo the same growth and
splitting processes described above, under a constant population
constraint (11). Seeding an initial set of random assemblies, the
emerging lineages manifest different levels of ‘‘viability’’ (Fig. 5).

Some disappear right away, whereas others continue to be
present for many generations. Within segments of some lineages,
specific composomes show a capacity to temporarily ‘‘breed
true,’’ but eventually accumulate compositional changes, giving
way to alternative QSSs.

Discussion
The computer simulation analyses presented here illustrate how
spontaneously forming noncovalent molecular assemblies, when
endowed with internal mutual rate enhancement, may exist in
numerous different compositional QSSs or composomes. These are
homeostatic, namely often capable of conserving their composi-
tional integrity over periods of time, through consecutive events of
growth and splitting. Homeostasis is rationalized by the formation
of complex feedback loops, resembling metabolic pathways, in
which many of the molecules within a subset end up collectively
catalyzing the joining of their kind. The assemblies undergo mu-
tation-like compositional changes that lead to a transition from one
QSS to another in a process that bears some similarity to speciation.
Such transitions result from events in which single molecules with
advantageous rate enhancement capacities are randomly inserted
into an assembly. Finally, it is shown that some lineages of assem-
blies may be more successful in selectively populating an environ-
ment. In this, sets of compositional assemblies bear formal resem-
blance to quasi-species of biopolymers (10, 11), providing a bridge
between the ‘‘genome first’’ and ‘‘metabolism first’’ paradigms (67).

Our approach extends and complements a previously pro-
posed model (4, 20), which uses a mean-field parameter for rate
enhancement to describe a transition between disordered and
ordered QSSs. A novel attribute of the present approach is an
ability to simulate the detailed kinetic behavior of the system by
the use of a physicochemically based probabilistic model.

In previous analyses (21, 22, 47), mutual catalysis was char-
acterized by what amounts to a b matrix in which a fraction p of
the elements have a constant value b* and the rest are equal to
0. An ever-increasing number of different compounds was shown
to result in a highly connected ‘‘catalytically closed’’ network (21,
22). In contrast, our model assumes a graded b matrix and a
constant repertoire size, whereby a spontaneous selection pro-
cess leads to a local decreased molecular diversity, associated
with highly connected networks.

The progression toward reduced diversity of low molecular
weight monomers constitutes a prerequisite for the subsequent
appearance of ‘‘alphabet-based’’ biopolymers, which typically
are composed of a restricted number of monomer types (12, 24,
46, 56). Future extensions of the present analyses, with the
inclusion of cooperative, nonlinear rate-enhancement kinetics
and controlled oligomerization could lead to more elaborate
information transfer and coding. Thus, analyzing compositional
assemblies may help define a rational pathway for the sponta-
neous passage from the ‘‘random chemistry’’ of prebiotic or-
ganosynthesis to the highly constrained monomer repertoires
and intricate polymer chemistry as seen in living cells.
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