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ABSTRACT: Molecular evolution can be conceptualized as a
walk over a “fitness landscape”, or the function of fitness (e.g.,
catalytic activity) over the space of all possible sequences.
Understanding evolution requires knowing the structure of
the fitness landscape and identifying the viable evolutionary
pathways through the landscape. However, the fitness
landscape for any catalytic biomolecule is largely unknown.
The evolution of catalytic RNA is of special interest because
RNA is believed to have been foundational to early life. In
particular, an essential activity leading to the genetic code
would be the reaction of ribozymes with activated amino
acids, such as 5(4H)-oxazolones, to form aminoacyl-RNA.
Here we combine in vitro selection with a massively parallel
kinetic assay to map a fitness landscape for self-aminoacylating RNA, with nearly complete coverage of sequence space in a
central 21-nucleotide region. The method (SCAPE: sequencing to measure catalytic activity paired with in vitro evolution)
shows that the landscape contains three major ribozyme families (landscape peaks). An analysis of evolutionary pathways shows
that, while local optimization within a ribozyme family would be possible, optimization of activity over the entire landscape
would be frustrated by large valleys of low activity. The sequence motifs associated with each peak represent different solutions
to the problem of catalysis, so the inability to traverse the landscape globally corresponds to an inability to restructure the
ribozyme without losing activity. The frustrated nature of the evolutionary network suggests that chance emergence of a
ribozyme motif would be more important than optimization by natural selection.

■ INTRODUCTION

Molecular evolution is largely governed by the function of
fitness in the space of all possible sequences, known as the
“fitness landscape”.1,2 Evolution corresponds to a biased
random walk on this landscape, in which mutation enables
exploration of neighboring points in sequence space, and
natural (or artificial) selection favors hill-climbing toward
higher fitness. Therefore, knowledge of the fitness landscape is
necessary for a systematic, quantitative understanding of
molecular evolution.3−5 For example, a deep question is
whether the landscape allows selection to optimize biochemical
activity. If the topography of the fitness landscape is relatively
smooth, optimization by selection can occur readily through
hill-climbing. However, if the landscape is riddled with low-
fitness valleys between local fitness optima, then many

potential evolutionary pathways through sequence space will
be inaccessible, inhibiting global optimization of activity. A
comprehensive map of the fitness landscape would enable
understanding of such fundamental issues.
Fitness landscapes of ribozymes are of special interest

because RNA may have been the first evolving molecule during
an “RNA World” at the time of the origin of life.6−12 In
addition, ribozymes have been proposed as the genetic and
catalytic basis for a minimal synthetic cell.13 On the practical
side, ribozymes can be relatively short in length (L),14 so it is
possible to interrogate the entirety of sequence space in a
laboratory setting (e.g., for L = 21, 421 ≈ 4 × 1012 possible
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sequences). Recent studies have emphasized the importance of
comprehensive coverage vs sparse sampling of sequence space
for understanding evolutionary pathways. For example, sparse
sampling (e.g., based on known genotypes) can miss viable
evolutionary pathways and create a biased view of the fitness
landscape.15,16 Exhaustive data could also aid computational
efforts to explore larger sequence spaces.17,18 Therefore,
mapping the comprehensive fitness landscape for ribozymes
is an important goal.
We previously developed a method for mapping the

comprehensive fitness landscape of an RNA aptamer by in
vitro selection,19 with abundance used as a proxy for fitness.
However, binding is qualitatively different from catalysis,20

which involves a reaction pathway, often including covalent
modification of the ribozyme, in addition to binding of the
substrate and stabilization of the transition state. Furthermore,
work by us and others has established methods for measuring
affinity constants, ribozyme reaction rates, and RNA processing
and thermodynamic stability by high-throughput sequencing,
raising the prospect of mapping the landscape in terms of
affinity or activity.21−29 Although prior studies measuring
chemical activity were applied to small populations or sparse
samples of sequence space, these studies, combined with the
ability to map a comprehensive fitness landscape, point toward
the possibility of mapping the comprehensive chemical activity
landscape for ribozymes.
In the current work, we use this combined approach, termed

SCAPE (sequencing to measure catalytic activity paired with in
vitro evolution), to map a comprehensive ribozyme activity
landscape. We focus on an activity that would be foundational
to protein translation, perhaps the most impressive invention
of the RNA World. Despite its importance, the emergence of
protein translation is poorly understood. A key activity is the
covalent attachment of specific amino acids to specific tRNAs,
which establishes the biophysical information content of the
“second genetic code”.30 In modern biology, this attachment is
catalyzed by aminoacyl-tRNA synthetases, but self-amino-
acylating ribozymes could have been the original basis of the
tRNA/synthetase system. Ribozymes that react with aminoacyl
adenylates or other activated substrates have been discov-
ered,31−35 illustrating the ability of ribozymes to catalyze
formation of aminoacyl-RNAs, although the substrates studied
previously are prebiotically implausible or highly unstable. In
contrast, N-carboxyanhydrides (NCAs) and the related 5(4H)-
oxazolones can be produced from amino acids (or peptides) by
multiple prebiotically plausible reaction pathways (e.g., with
carbonyl sulfide,36 cyanate,37 or cyanamide38 as activating
agents). These compounds react with amino acids to form
peptides,39 and therefore have been proposed as a prebiotic
form of chemically activated amino acids. At high concen-
tration, NCAs and 5(4H)-oxazolones react with phosphate
esters, including nucleotides, to form aminoacyl-RNA mixed
anhydrides in low yield,40−44 suggesting this reaction as a
candidate for ribozyme catalysis. Use of 5(4H)-oxazolones
avoids uncontrolled polymerization in comparison to NCAs,
making oxazolones a practical and prebiotically relevant
substrate for in vitro selection. Thus, we apply SCAPE to
map the catalytic activity landscape for ribozymes that self-
aminoacylate using a prebiotically plausible form of chemical
activation, and we analyze the evolutionary and mechanistic
implications of the empirically determined ribozyme landscape.

■ RESULTS

The SCAPE strategy begins with a population of molecules
containing a randomized central region of 21 nt flanked by two
constant regions used for PCR amplification (total length = 71
nt). In a first step, this library is subjected to in vitro selection
for aminoacylation activity to isolate the ribozymes. In a
second step to assay the ribozymes’ activities, a pool of the
selected molecules that includes many (∼104 to 105) different
active sequences is allowed to react with various concen-
trations of substrate, and the products are isolated and
sequenced on the Illumina platform. The sequencing output is
used to quantify reaction products28 and thereby measure the
catalytic rates of potentially hundreds of thousands of
sequences in parallel. We refer to this second step as kinetic
sequencing (k-Seq).

Selection of Aminoacylation Ribozymes. Beginning
with a pool of random-sequence RNAs (central random region
length L = 21) with high coverage of sequence space (∼70−
99.99% coverage; Supporting Text S1), six rounds of in vitro
selection for aminoacylation activity were conducted (Figure
1A). In each round, the RNA pool was reacted with a
biotinylated tyrosine analog, biotinyl-Tyr(Me)-oxazolone
(BYO). RNAs that react with BYO become covalently attached
to the biotin tag, allowing their isolation by binding to
streptavidin beads. These RNAs are reverse-transcribed and
amplified by PCR, providing templates for the next round of
selection and amplification. The progress of the selection was
followed by high-throughput sequencing, which yielded 2 ×
106 to 1 × 107 sequence reads per round of selection. Two
replicates of the selection were performed (RS1 and RS2).
Analysis was conducted using RS1, with data from RS2 used to
confirm reproducibility of the selection.
For each round, sequences were first clustered into families

using a maximum edit distance of 3 mutations (substitutions,
insertions, or deletions) from the center sequence, which was
defined as the sequence of highest abundance in the family.
Sequence families could be identified starting in Round 4
(Figure 1B, Supporting Figure S1A). The 20 ribozyme families
of highest center abundance identified in the RS1, Round 5
pool were compared manually to identify conserved sequence
motifs. The top 20 families comprised 80% of sequence reads
by Round 6 and were consistent in RS1 and RS2 (Supporting
Figure S1B). These 20 families could be characterized by one
of three distinct motifs, numbered as Motif 1, 2, and 3. Motif 1
contained the shortest conserved region (Figure 1C,
Supporting Figure S1C) and the greatest number of unique
sequences contained Motif 1. This motif could be further
categorized into three submotifs (1A, 1B, 1C) based on
differences in the conserved region, with 14 of the top 20
families containing Motifs 1A or 1B. Motif 2 characterized
fewer unique sequences than Motif 1, but more than Motifs
1A, 1B, or 1C. Motif 2 also characterized Family 2.1, the most
abundant family in the pool. Of Motifs 1−3, Motif 3 was found
in the smallest fraction of the pool and characterized the fewest
unique sequences.

Kinetic Sequencing (k-Seq). We determined the rate
constants of the selected ribozymes by a massively parallel
assay (kinetic sequencing, or k-Seq; Figure 2A). In a gel-based
assay to measure the rate constant of aminoacylation, a single
RNA sequence was mixed with BYO and product formation
was monitored by gel shift of the RNA in the presence of
streptavidin. In the k-Seq assay, we reacted a heterogeneous
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pool obtained from in vitro selection, which contained many
different RNA sequences, with BYO and isolated the
aminoacylated RNAs using streptavidin beads. These RNAs
were analyzed by high-throughput sequencing (HTS), yielding
the relative abundance of each sequence in the products, which
were converted to absolute concentrations by comparison to a
standard of known concentration in the product pool. Rate
constants (ks for sequence s) and maximum amplitude of
reaction (As) in both assays were obtained from the
dependence of product formation on the concentration of
BYO. k-Seq estimates for activity could be obtained for 8.9 ×
106 sequences, but the majority of sequences were present at
low abundance and correspond to low activity (Supporting

Figure S2). ∼105 unique sequences, out of ∼421 possibilities,
were found to have activity >10-fold above the noncatalytic
background rate (i.e., catalytic enhancement rs > 10, where rs =
ksAs/k0A0, and k0 and A0 are the rate constant and amplitude of
reaction of the noncatalyzed reaction, measured in the
randomized RNA pool).
To determine how well k-Seq results corresponded to results

of the standard assay, we chose ten sequences that are close to
the consensus sequences of the high- or medium-activity
families (with all five motifs and submotifs represented) and
measured aminoacylation activity by the gel-shift assay.45 Rate
constants determined from k-Seq matched well with gel-shift
measurements (Figure 2B,C, Supporting Table S1). All k-Seq
and gel-shift measurements were performed in triplicate and
the standard error was similar between k-Seq and gel-shift
measurements (Supporting Figure S1A). Measurement error
during k-Seq decreased as sequence read abundance increased,
as expected for stochastic noise. For most sequences with
count >10, and nearly all sequences with count >100, the noise
of k-Seq measurements appeared to be within a factor of 2
(Supporting Figure S4).
High-activity sequences (e.g., the center of Family 2.1, with

rS‑2.1‑a = 1010 and ks = 779 ± 21 min−1 M−1) exhibit saturating
kinetics from k-Seq, providing both the rate constant (ks) and
the maximum amplitude of reaction (As). However, the
reaction for lower activity sequences (approximately ks < 20
min−1 M−1) appears linear under the conditions tested, so that
ks and As are difficult to estimate separately using these data;
instead the combined parameter ksAs can be estimated
(Supporting Figure S5A).

Aminoacylation Site and True Catalytic Enhance-
ment. The most highly abundant sequences from each major
motif were chosen (S-1A.1-a, S-1B.1-a, S-2.1-a, S-3.1-a; see
Methods for sequence nomenclature) for characterization of
the reactive site. Identification of the reactive site was
performed in two steps. First, reverse transcription is known
to be sensitive to 2′ adducts, such that stalled products can be
used to identify the sites of 2′ acylation.46,47 The putative
ribozymes were ligated to a 3′ adapter to test for stalling of
reverse transcription along the entire length of the ribozyme.
Stalling resulted in a truncated product whose length,
determined by gel electrophoresis, suggested a likely site of
aminoacylation (Figure 3A; Supporting Figure S10). Second,
the nucleophilic importance of the 2′-OH at the candidate site
was verified by testing the activity of a synthetic RNA modified
at this position by 2′-O-methylation. In each case, a control
synthetic RNA that was instead modified at an adjacent
position was also tested. Blocking of the candidate site (but not
the control sites) by O-methylation is expected to abolish the
reaction. For all sequences tested, the results were consistent
with aminoacylation at a specific internal 2′-OH position
within the 3′ constant region of the sequence (Figure 3B;
Supporting Figure S6). While the reactive site was conserved
for sequences from the same major motif (e.g., S-1A.1-a and S-
1B.1-a, both from Motif 1), the site differed among sequences
from the three major motifs, indicating that ribozymes with
different motifs utilize different detailed reaction mechanisms.
Note that the catalytic enhancement rs calculated here

underestimates the true catalytic enhancement at the modified
site. The potential nucleophilic sites include 70 internal 2′-OH
groups, the vicinal diol at the 3′ end, and the 5′-triphosphate.
Thus, the uncatalyzed reaction rate at a particular site is at least
73-fold lower than k0A0, which we measured for the entire

Figure 1. In vitro selection for aminoacylation ribozymes. (A)
Selection began with DNA templates containing a transcription
promoter (gray) and a central region of 21 random-sequence residues
(red or blue) flanked by constant regions (black). These templates
were transcribed into RNA and incubated with BYO. Aminoacylated
RNAs (red) were isolated using streptavidin beads and amplified by
RT-PCR for the next round of selection. (B) Pool composition over
Rounds 4−6 after clustering. The top 20 families are indicated in non-
neutral colors; gray corresponds to unclustered sequences; white
corresponds to families with rank by abundance >20. Multiple families
from submotif 1A (purple), 1B (dark blue), 1C (cyan), Motif 2
(green), and Motif 3 (yellow) are shown. Inset: Abundance of the top
20 families in Rounds 4−6 (same color scheme, except that the dotted
black line corresponds to families of rank >20). (C) SeqLogo
representations of the motifs.
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RNA. In addition, previous work on oxazolone modification of
small RNA oligonucleotide models indicates that the vicinal
diol and terminal phosphates (2′, 3′, or 5′) are strongly
preferred as nucleophiles, with no detectable reactivity at
internal 2′-OH sites.43,44 In contrast, we found that all
ribozymes tested, representing each motif (1A, 1B, 2, 3),
were modified at an internal 2′-OH. Therefore, the true
catalytic enhancement provided by these ribozymes at a

specific internal 2′-OH is likely to be at least 700-fold greater
(Supporting Text S2) than the rs as reported here.

Frequency Distribution of Catalytic Activity. The log-
normal shape of the frequency distribution of catalytic activity
ksAs, is consistent with prior findings.24,48 Because the rate
constant scales exponentially with the activation energy, it was
of interest to determine the distribution of ks alone. For the
highest activity family (2.1), many ribozymes could be
characterized by ks and As separately. ks was observed to fit a
log-normal distribution, indicating that activation energies are
normally distributed for a ribozyme family (Supporting Figure
S5B,C). The distribution of As, which represents the maximum
extent of reaction and may indicate the fraction of RNA that is
well-folded, also fit well to a log-normal distribution, suggesting
that folding energies may also be normally distributed for a
ribozyme family. For the regime in which ks and As could be
determined separately, these parameters are not well-correlated
with each other (Supporting Figure S5A), suggesting no
relationship between the catalytic rate and fraction folded.

Ruggedness of Chemical Activity Peaks. To under-
stand how the overall character of the ribozyme fitness
landscape compares with well-known theoretical models, we
characterized the ruggedness of the ribozyme peaks. Generally,
the fitness of close relatives is highly correlated to each other,
but the fitness of more distant relatives is less correlated. A
simple measure of ruggedness is the fitness correlation γd for a
ribozyme family, which is the average correlation of activity
effects of single mutations between sequences at evolutionary
distance d of each other49 (d is the Levenshtein edit distance,
i.e., the number of substitutions, insertions or deletions
between two related sequences). γd = 1 indicates a perfectly
smooth landscape and γd = 0 indicates a highly rugged,
completely uncorrelated landscape. γ1 was approximately 0.3−
0.4 for all families analyzed, i.e., the typical effect of a particular
mutation is 30−40% correlated across all single mutant
backgrounds (Figure 3C, Supporting Figure S7), indicating
substantial ruggedness of the fitness peaks. Interestingly, as the
neighborhood size increased up to d = 4, γd dropped only

Figure 2. Emergence of ribozymes and kinetic characteristics. (A) In k-Seq, an RNA pool enriched for active ribozymes is reacted at multiple BYO
concentrations, in triplicate. Captured RNA is then reverse-transcribed and sequenced. Activity curves are constructed for sequences detected in the
enriched pool. (B) Aminoacylation at various [BYO] for ribozyme S-2.1-a observed by both gel shift and k-Seq Data for all other measured
ribozymes are shown in Supporting Figure S3. Error bars correspond to standard deviation among triplicates. (C) Correlation between catalytic
enhancement of ten ribozymes, measured by gel shift assay and k-Seq Error bars correspond to standard deviation among triplicates (k-Seq) or 2−3
replicates (gel assay) (R2 = 0.87; Supporting Table S1). Dotted orange line indicates line of unity.

Figure 3. Aminoacylation site and landscape ruggedness. The likely
site of BYO modification on ribozyme S-1A.1-a was identified by
stalling of reverse transcription, resulting in a truncated product (A).
The site, G65, was verified by loss of activity upon 2′-O-methylation,
assayed by streptavidin gel shift after BYO reaction (B). 2′-O-
Methylation of an adjacent site (C64) did not show loss of activity.
(C) Average correlation of fitness effects γd as a function of edit
distance d, shown for the sequence families around the five most
abundant centers: 2.1 (magenta), 1A.1 (red), 1B.1 (orange), 1B.2
(green), 1A.2 (blue).
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slightly (Figure 3C), indicating that activity remained similarly
correlated at longer evolutionary distances within the peaks.
The relative constancy of γd over a range of d indicates an
underlying smoothness that is felt throughout the peak.
Evolutionary Pathways between Ribozyme Motifs. A

series of single mutations defines an evolutionary pathway
between two sequences. Although there are very many
conceivable pathways, many of these include intermediate
sequences of low fitness. Under selection, such fitness valleys
represent dead ends that effectively block evolution. An open
question is whether viable evolutionary pathways exist between
different sequences that catalyze the same reaction. Using the
chemical activity data from k-Seq, we searched for viable
evolutionary pathways between center sequences of the major
ribozyme families (Figure 4, Supporting Table S2).

A broad network of pathways was found among Families
1A.1, 1B.1, and 1C.1, with a <10-fold catalytic rate decrement
at the lowest point of the best pathways. Thus, the families of
Motif 1 form a “plateau” in the chemical activity landscape,
corresponding to the small size of Motif 1. Similarly, viable
pathways exist between the top two families of Motif 2.
Although Motif 2 encompasses a smaller region of sequence
space compared to Motif 1 due to a larger conserved region,
Motif 2 contains the global optimum of the landscape. Viable
pathways were not found between families of Motif 3, likely
due to the small number of unique sequences in this motif.
Within Motifs 1 and 2, the number of viable pathways was
relatively small, suggesting that evolution within a motif would
be fairly reproducible.
However, evolutionary pathways between motifs appeared

strikingly different. The only pathways that could be
constructed between different motifs contain fitness losses
down to baseline activity, with multiple mutational steps
occurring at near baseline activity. The closest apposition of
motifs was a pathway between Family 3.1 and Family 1A.1,
which involves 5 consecutive intermediates expected to have
baseline activity (i.e., r ∼ 103-fold less than rS‑2.1‑a). The global
optimum (Family 2.1) is especially isolated, with >10
mutations at baseline activity required along any pathway
toward a different motif. These pathways would not be viable
under selection, indicating that optimization of activity over
the global fitness landscape would be frustrated.

■ DISCUSSION
In the SCAPE method, a ribozyme fitness landscape can be
mapped in two steps. First, the vast majority of inactive
sequences are removed from the pool through in vitro
selection. Second, the catalytic activities of the remaining
sequences are directly assayed by kinetic sequencing (k-Seq).
In this case, k-Seq yielded estimates for ∼105 unique sequences
(a number that in general depends on pool diversity, activity
distribution, and sequencing depth). Using SCAPE, we
mapped the first comprehensive fitness landscape for catalytic
activity, subject to the following caveats. First, in order to
survive the selection, sequences must be both catalytically
active and replicable (by transcription and RT-PCR). Because
RT stalls at the aminoacylated site, ribozymes that amino-
acylate within the randomized region are presumably
disfavored. Consistent with this, all of the ribozymes tested
here react within the 3′ constant region, as modification does
not preclude primer binding. Sequences may also have been
lost during selection for other reasons (e.g., transcription or
RT-PCR bias, and genetic drift in early rounds). While such
occasional losses might affect the details of evolutionary
pathways, they would likely not affect the overall findings given
the extensive fitness valleys found. Alternatively, if the starting
library were relatively small (∼106 sequences), k-Seq alone
(without selection) could be used to build a comprehensive
map of the library; advances in sequencing technologies may
push this bound further. Second, fitness is measured in the
specific environment applied, in this case for aminoacylation
activity under the chemical conditions of the selection. How
the environment would affect the fitness landscape, and how
aminoacylation activity might relate to the replicative fitness of
an RNA World organism (a variety of relationships are
possible50−54), are difficult to address at present.
We discovered ribozymes that self-aminoacylate using a

5(4H)-oxazolone, a key step toward the genetic code. The best

Figure 4. Evolutionary pathways for aminoacylation ribozymes. (A)
Catalytic enhancement along a best pathway discovered from the
center of Family 1B.1 (pink, S-1B.1-a), to 1A.1 (purple, S-1A.1-a), to
2.1 (cyan, S-2.1-a), to 2.2 (gray, S-2.2-a). Capital letters denote
sequence positions changing at each step; underscore indicates a
deletion. A large drop in activity is required for several mutations
between Motif 1 and Motif 2. Error bars are standard deviation from
triplicate measurements (only top bar is shown). Also see Supporting
Figure S11. Asterisk (*) indicates a sequence that was found in only
one replicate (RS1). (B) Evolutionary network displaying the 10 best
pathways discovered between the centers of six key families (1A.1,
1B.1, 1C.1, 2.1, 2.2, and 3.1) representing each motif and submotif
and the two most active centers from Motif 2. Each node is an
individual sequence with activity measured by k-Seq indicated by
color (see legend; red indicates activity at or below the baseline rate).
The lines indicate mutational distance between sequences (solid black
line = 1 mutation). Dotted lines indicate sequences at baseline activity
(see legend). The majority (67%) of the edits along these pathways
are substitutions; the remainder are indels.
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ribozyme found here has a rate constant comparable to that of
ribozymes obtained using a biologically derived aminoacyl
adenylate,31,32 indicating that these reactions could proceed
efficiently even with only prebiotic substrates. Interestingly, all
ribozyme families discovered here react at an internal 2′-OH of
the RNA. These sites stand in contrast to the modification of
modern tRNAs at the vicinal diol (3′ terminus), which is also
found to be more reactive in model oligonucleotides.43,44 It is
possible that an internal reaction site facilitates establishment
of multiple contacts with BYO, and the rate acceleration
caused by these structural features outweighs the intrinsic
reactivity of the vicinal diol. Similarly, it is unknown whether
the identity of the 3′ terminal sequence (CUG in this study,
compared to CCA in tRNAs) may contribute to this finding.
This difference raises the interesting question of whether
ribozymes such as those discovered in this model system could
be on the pathway toward the modern implementation of the
genetic code; whether they have the evolutionary capacity to
adopt a mechanism more similar to the aminoacyl-tRNA
synthetase system is currently unknown.
Analysis of individual ribozyme families indicates that the

overall topography of each peak can be described as a
combination of two components: a “smooth” component
(∼40%) in which mutations have additive effects on catalytic
activity, and a “rough” component (∼60%) that represents
deviations from additivity (i.e., epistasis). This combination
resembles the so-called “Rough Mt. Fuji” model, which
consists of a perfectly smooth peak overlaid by uncorrelated
ruggedness4,55−58 (Supporting Figure S7; also see discussion
below).
In addition to discovering novel ribozymes, a primary

motivation for SCAPE analysis is to learn about molecular
evolution by exhaustively determining the viable evolutionary
pathways and networks through sequence space. We found
that, while some viable pathways exist locally around an
optimum, most conceivable pathways toward the global fitness
optimum (Family 2.1) are blocked by extensive fitness valleys.
The likely reason is that the three major motifs differ
substantially in structure, as indicated by their different
aminoacylation sites. It appears that the ribozyme structure
cannot be changed without essentially destroying the structure
of one ribozyme and building another, requiring extensive
mutations at negligible activity. Such evolutionary walks would
be essentially impossible while under selection for catalytic
activity, frustrating optimization over the network.
This landscape can be compared to other landscapes and

evolutionary pathways that have been described for functional
RNA. Extensive work on in silico folding of RNA sequences
has predicted the existence of large neutral networks for
secondary structure, in which evolutionary walks over long
distances could maintain a given structure.59−61 Such neutral
networks would permit facile exploration of sequence space
through evolution. In addition, multiple examples of ribozymes
evolving to perform different functions are known.62−65 In
contrast, the previously described landscape for RNAs selected
to bind GTP (based on sequence abundance rather than
activity measurement; see Supporting Figures S3F and S8)
showed that the landscape consisted of several evolutionarily
isolated peaks.19 Thus, it appears that, although preservation of
secondary structure could occur over a neutral network, the
additional tertiary structural requirements of a functional RNA
leads to a qualitative change in the nature of the evolutionary
network. Such a change is analogous to the phase transition-

like behavior of percolation through a network;66 as the
frequency of active nodes decreases, the network suddenly
switches from highly connected, as in the case of neutral
networks of RNA secondary structure, to essentially imper-
meable, as observed for evolutionary networks of functional
RNAs. An important caveat is that the landscape reported here
was mapped under constant selection for a single catalytic
activity and cannot be directly compared to evolutionary
pathways leading to new functions; changing environments67

or selection pressures may significantly alter this picture.
The phenomenon of frustration arises when competing

interactions prevent overall optimization of a system, resulting
in a large number of local maxima. A classic illustration of
frustration is the antiferromagnetic spin glass, in which energy
would be minimized by antiparallel placement of neighboring
electronic spins. In certain configurations (e.g., a triangular
lattice), no placement of spins can satisfy all desired
constraints, leading to rugged energy landscapes.68 The
analogy to frustrated spin glasses has been explored
theoretically to understand fitness landscapes.3,58,69−71 For
example, the NK model of fitness landscapes, in which there
are N sites and the fitness contribution of each site is
influenced by K other sites, is equivalent to a form of spin glass,
with the ruggedness of the landscape tuned by the epistatic
parameter K.72,73 At an extreme, when K = N − 1, the fitness of
similar genotypes is completely uncorrelated. This regime is
similar to the “House-of-Cards” landscape generated when
fitness values are randomly assigned, giving a maximally
rugged, degenerate landscape with a very large number of local
optima.3,74,75 The House-of-Cards landscape is also equivalent
to the random energy model approximation for a disordered
spin glass.76 These theoretical models of maximally rugged
energy or fitness landscapes are characterized by frustration: no
configuration (i.e., sequence) can simultaneously satisfy all
desirable interactions. The ruggedness of the empirically
determined ribozyme fitness landscape reported here can be
described by the Rough Mt. Fuji model, which is a
combination of a smooth “Mt. Fuji” landscape and the random
House-of-Cards landscape,56,77 with the weighting of this
combination reflected by the fitness correlation γd.

49 Our
analysis of γd showed that the rugged House-of-Cards
component dominated the shape of the major peaks of the
landscape, with ∼60% of the variance of fitness being
attributable to random contributions. (Note that this rugged-
ness is not fully represented in Figure 4, which only illustrates
the best evolutionary pathways found between peaks.) Thus,
while the fitness landscape observed here is not entirely
uncorrelated, we suggest that the major House-of-Cards
character found implies a substantial level of frustration,
consistent with the lack of viable evolutionary pathways among
the major optima.
Frustration in biological systems has also been invoked to

understand the folding energy landscape of proteins,78−80

where individual local molecular arrangements that minimize
energy may be mutually incompatible, resulting in rugged
energy landscapes and misfolded states. Other systems that
may exhibit some frustration include gene expression net-
works,81 morphological innovation,82 and even the evolution
of biological complexity.83 Our results show that the
experimentally determined ribozyme activity landscape exhibits
a degree of frustration, as individually beneficial mutations are
often mutually incompatible, leading to ruggedness on the
fitness landscape.71,84 Walks on such energy or evolutionary
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landscapes are characterized by sensitivity to initial conditions,
difficult optimization, and multiple possible outcomes. It
should be noted that mechanisms that favor greater genetic
diversity, such as recombination, gene duplication, or epistasis
among genes, could enable crossing of fitness valleys.85,86

Recent work suggests that recombination, in particular, can
occur spontaneously in pools of RNA.87,88 The quantitative
effect of such mechanisms on traversal of the fitness landscape
is unknown at present. Nevertheless, in the absence of such
mechanisms, the emergence of a globally optimal sequence is
likely to result from chance events rather than natural
selection.

■ METHODS
Synthesis of Biotinyl-Tyr(Me)-Oxazolone (BYO). General

Synthetic Procedures. Reagents and solvents were obtained from
Fluka, Sigma-Aldrich or Bachem, and were used without further
purification. NMR spectra in either CDCl3, DMSO-d6 or D2O
solution were recorded on a Bruker DPX 300 spectrometer (300
MHz) or on a Bruker Avance 400 spectrometer (400 MHz); chemical
shifts δH are reported in ppm with reference to the solvent resonance
(CDCl3: δH = 7.26 ppm; DMSO: δH = 2.50 ppm; H2O: δH = 4.79
ppm); coupling constants J are reported in Hz. UHPLC analyses were
carried out on a Thermo Scientific Dionex UltiMate 3000 Standard
system including an autosampler unit, a thermostated column
compartment and a photodiode array detector, using UV absorbance
detection at λ = 273 nm. HPLC/ESI-MS analyses were carried out on
a Waters UPLC Acquity H-Class system including a photodiode array
detector (acquisition in the 200−400 nm range), coupled to a Waters
Synapt G2-S mass spectrometer, with capillary and cone voltage of 30
kV and 30 V, respectively, source and desolvation temperature of 140
and 450 °C, respectively. ESI+ and ESI− refer to electrospray
ionization in positive and negative mode, respectively. HRMS spectra
were recorded on the same spectrometer, using the same source
settings as above.
Preparation of N-tert-Butoxycarbonyl-O-methyl-tyrosine methyl

ester (Boc-Tyr(Me)-OMe). Synthesis of Boc-Tyr(Me)-OMe was
carried out according to a published procedure.89,90 A solution of
Boc-Tyr-OH (7.0 mmol, 2.0 g; Bachem) in dimethylformamide
(DMF, 20 mL) was cooled using an ice bath and treated with freshly
ground KOH (7.7 mmol, 0.43 g). A cooled solution of CH3I (7.7
mmol, 0.49 mL) in DMF (5 mL) was added dropwise over 1 min.
The mixture was stirred at room temperature for 30 min, then cooled
using an ice bath, and additional KOH (7.7 mmol, 0.43 g) and a
cooled solution of CH3I (7.7 mmol, 0.49 mL) in DMF (5 mL) were
added dropwise over 1 min. The mixture was stirred for 3 h at room
temperature, poured onto ice (40 g), and extracted with ethyl acetate
(3 × 20 mL). The organic layers were washed with water (3 × 13
mL), brine (2 × 13 mL), and dried over Na2SO4. The solvent was
removed under reduced pressure to afford a colorless oily residue.
Then the oil was purified by preparative silica gel chromatography
(mobile phase: ethyl acetate−hexane, 3:7 v/v) (yield: 1.4 g, 63.6%).
1H NMR (400 MHz, DMSO-d6) δ 7.14 (d, J = 8.5 Hz, 2H), 6.84 (d,
J = 8.6 Hz, 2H), 4.11 (ddd, J = 10.0, 8.1, 5.3 Hz, 1H), 3.72 (s, 3H),
3.61 (s, 3H), 2.99−2.72 (m, 2H), 1.33 (s, 9H).
Preparation of Biotinylated O-Methyl-Tyrosine (Biotin-Tyr(Me)-

OH). This compound was prepared in three steps. In the first stage,
Boc-Tyr(Me)-OMe (1.0 g) was treated by trifluoroacetic acid
(TFA)/water solution (9:1 v/v, 2 mL) for 30 min. TFA was removed
by evaporation in vacuo, the residue was poured into diethyl ether, the
TFA salt of H-Tyr(Me)-OMe was collected by filtration as a white
precipitate (yield: 0.88 g, 84%). 1H NMR (400 MHz, CDCl3) δ 7.14
(d, J = 8.1 Hz, 2H), 6.88 (d, J = 7.9 Hz, 2H), 4.23 (t, J = 6.4 Hz, 1H),
3.80 (s, 3H), 3.78 (s, 3H), 3.24 (qd, J = 14.6, 6.2 Hz, 2H).
In the second stage, biotin (345 mg, 1.41 mmol), was activated

with 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC, 293
mg, 1.55 mmol) and hydroxybenzotriazole monohydrate (HOBt, 242
mg, 1.55 mmol) in a mixture of CH2Cl2 (7 mL) and DMF (7 mL).

The mixture was stirred for 5 h. Then the TFA salt of H-Tyr(Me)-
OMe (500 mg, 1.55 mmol) was added with N-ethyl-N,N-diisopropyl-
amine (DIEA, 531 μL, 3 mmol), and the mixture stirred overnight.
DMF was removed under reduced pressure, and the residue
redissolved in ethyl acetate (100 mL), washed with water (30 mL),
1 M KHSO4 (10 mL), NaHCO3 (saturated solution, 10 mL), and
brine (10 mL), consecutively. The solution was dried over anhydrous
Na2SO4 and concentrated under reduced pressure. Residual DMF was
removed by dissolving the residue in ethyl acetate (20 mL) and
precipitation with hexane (5 mL). The solid was recovered by
filtration, washed with hexane, and dried in vacuo (300 mg, 46%).

The methyl ester biotinyl-Tyr(Me)-OMe (270 mg, 0.62 mmol)
was then dissolved in iPrOH:H2O (7:3 v/v) (minimum volume),
treated with 1 N NaOH (0.93 mL). The mixture was stirred at room
temperature overnight. The solvent was removed under reduced
pressure, and the product was precipitated upon addition of water and
acidification with 1 M HCl. The free acid biotinyl-Tyr(Me)-OH was
recovered by filtration as a white solid, washed with water, and then
dried under reduced pressure (yield: 226 mg, 86%). 1H NMR (300
MHz, DMSO-d6) δ 8.05 (d, J = 8.1 Hz, 1H), 7.13 (d, J = 8.5 Hz, 2H),
6.83 (d, J = 8.5 Hz, 2H), 6.37 (d, J = 9.9 Hz, 2H), 4.45−4.24 (m,
2H), 4.19−4.06 (m, 1H), 3.71 (s, 3H), 3.09−2.90 (m, 2H), 2.80
(ddd, J = 20.9, 13.2, 7.3 Hz, 2H), 2.05 (t, J = 7.1 Hz, 2H), 1.69−1.08
(m, 6H). HRMS (ESI+) m/z calcd for C20H28N3O5S [M + H]+

422.1750, found 422.1747.
Preparation of Biotinyl-Tyr(Me)-Oxazolone (BYO). In a typical

experiment, biotinyl-Tyr(Me)-OH (42 mg, 0.1 mmol) was mixed
with CH2Cl2 (3 mL) and then EDC (21.9 mg, 0.12 mmol) was
added. After stirring by magnetic stirrer for 1 h, all the starting
material was dissolved. Additional CH2Cl2 (3 mL) was added, then
the mixture was washed by H2O (5 mL) twice and saturated brine (5
mL) once. The organic layer was dried by anhydrous Na2SO4 and
concentrated under reduced pressure. The residue was dried in
vacuum in the presence of P2O5 for 1 h. The product was stored
under −20 °C, or kept in a solution of CH3CN under −20 °C. HRMS
(ESI+) m/z calcd for C20H26N3O4S [M + H]+ 404.1644, found
404.1644. See Supporting Figure S9 for NMR data.

Ribozyme Selection and Sequencing. Chemical synthesis
(IDT, PAGE purification) was used to obtain a library of DNA
molecules having the sequence 5′-GATAATACGACTCACTAT-
AGGGAATGGATCCACATCTACGAATTC-N21-TTCACT-
GCAGACTTGACGAAGCTG-3′, where N21 denotes 21 consecutive
random positions and nucleotides upstream of the transcription start
site are underlined. Two replicates of the selection were performed
(RS1 and RS2), beginning with 9.1 (coverage ≈ 1.3-fold) and 145
pmol (coverage ≈ 20-fold) of DNA for RS1 and RS2, respectively.
RNA was transcribed using HiScribe T7 polymerase (New England
Biolabs) and purified by denaturing polyacrylamide gel electro-
phoresis (PAGE). In the first round of selection, 3.4 × 1014 or 1.9 ×
1015 RNA sequences (RS1 and RS2, respectively) were incubated
with 50 μM BYO in the aminoacylation selection buffer (100 mM
HEPES (pH 6.95), 100 mM NaCl, 100 mM KCl, 5 mM MgCl2, 5
mM CaCl2) for 90 min, at an RNA concentration of 1.4−3.2 μM. The
reaction was stopped by removing unreacted substrate using Bio-Spin
P-30 Tris desalting columns (Bio-Rad). Streptavidin MagneSphere
paramagnetic beads (Promega) were used to isolate reacted sequences
at a volume ratio of 1:4, which were then eluted with a 5 min
incubation at 65 °C in a solution containing 95% formamide and 10
mM EDTA. Sequences were prepared for the next round of selection
by reverse transcription and PCR (RT-PCR), with primers
complementary to the fixed sequence shown above. Five additional
rounds of selection were performed using the same procedure, with
∼400 pmol (∼2 × 1014 molecules; 2 μM) of RNA in each round.
DNA samples from each round were barcoded and pooled for
sequencing by Illumina NextSeq 500 (Biological Nanostructures
Laboratory, California NanoSystems Institute at UCSB).

Identification of Ribozyme Families and Motifs. Clustering
was performed on the Galaxy platform91 for sequences in Rounds 4−
6. Multiple families containing the same motif were designated as
1A.1, 1A.2, etc., or 2.1, 2.2, etc. Center sequences were used to assign
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each family to a motif. SeqLogo plots92 representing motifs were
generated from all sequences identified among every family grouped
into that motif. Sequences are named according to the convention: S-
Motif.family rank-sequence rank, where rank is determined by relative
abundance in Round 6. For example, S-1B.1-a is the top-ranked
sequence from the top-ranked family of Motif 1B.
Kinetic Sequencing (k-Seq). Two μg of RNA from Round 5

(RS1) were incubated with BYO substrate at various concentrations
(2, 10, 50, and 250 μM), under buffer conditions and reaction time
otherwise identical to those during selection. Streptavidin beads were
added at a volume ratio of 1:1, and bound RNA was eluted as
described above. To enable absolute quantitation of the products, 4,
12, 17, and 42 fmol, respectively, of a control RNA sequence were
spiked into the RNA eluted from each concentration point. The spike-
in control sequence was transcribed by T7 RNA polymerase from a
DNA oligonucleotide (IDT) having the sequence 5′-GATAAT-
ACGACTCACTATAGGGAATGGATCCACATCTACGAA-
TTCAAAAACAAAAACAAAAACAAATTCACTGCAGAC-
TTGACGAAGCTG-3′ (promoter underlined). The k-Seq reactions
were performed in triplicate, barcoded, and sequenced as described
above.
Every unique sequence detected in Round 5 was tracked across all

12 k-Seq samples. The absolute concentration of each sequence was
calculated as (ns/nspike)[spike], where ns and nspike are the number of
reads found for sequence s or the spike-in sequence, respectively, and
[spike] is the known concentration of the spike-in sequence in the
sample. Concentrations were averaged across triplicates and fit to the
first-order rate equation F A( BYO ) (1 es s

k tBYOs[ ] = − − [ ] ), where Fs is
the measured fraction of sequence s reacted, As is the maximum
reacted fraction, t is the incubation time of 90 min, and ks is the
effective rate constant of the reaction catalyzed by sequence s (see
Supporting Text S3). To obtain an estimate of error, each set of 12
observations was randomly grouped into three series of four
concentrations, ks and As were fit individually for each set, and the
standard deviation among the three series was calculated.
For sequences of low activity, the parameter As could not be

accurately estimated over the concentrations tested, leading to a
fitting artifact with As = 1 and underestimation of ks (Supporting
Figure S5A). However, while As and ks are poorly estimated
individually, the combined chemical activity parameter ksAs is
estimated more accurately. Thus, ksAs was used to compare catalytic
activity across the broad range of observed activity. The ratio of ksAs
to k0A0 (the uncatalyzed activity, see below) is defined as the catalytic
enhancement of sequence s (rs).
Determination of Aminoacylation Rate by Gel Shift Assay.

Ten sequences were chosen from among the top 20 peaks for
experimental testing (Supporting Table S1). The corresponding DNA
oligonucleotides were obtained from IDT (HPLC-purified) and RNA
was transcribed using T7 RNA polymerase. In addition, a control
sample of random pool sequences was used to determine baseline
uncatalyzed activity (k0A0, measured as a combined parameter). RNA
was labeled using a 5′ EndTag Labeling Kit (Vector Laboratories)
with Alexa 488 (Fisher), and purified by phenol-chloroform
extraction. Labeled RNA sequences were then incubated (RNA
concentration of 100 nM) with BYO for 90 min under conditions
described as above for k-Seq. Following desalting, samples were
incubated with 2 μM streptavidin for 15 min in 10 mM Tris (pH 7.0),
then analyzed by native PAGE. Gels were scanned and fluorescence
was quantified with ImageQuant software on an Amersham Typhoon
5 Biomolecular Imager. Bands corresponding to the streptavidin
complex and the free RNA band were quantified to calculate the
fraction of each sequence that had undergone aminoacylation. Values
determined by k-Seq were compared to gel shift percentages
(Supporting Figure S3A) to determine the average fraction loss l
during streptavidin bead pull-down. This value of l was used as a
correction factor when calculating catalytic enhancements using k-Seq
data, as k0A0 was measured by gel-shift assay (also see Supporting
Table S1).

Identification of the Reactive Nucleotide. Ribozyme amino-
acylation reactions were performed in selection buffer containing 1
μM RNA and 500 μM BYO and incubated with gentle agitation for
90 min. RNA was concentrated using Amicon Ultracel-3 filters (EMD
Millipore) and an adapter oligo having the sequence 5′-AACCTG-
CTGTCATCGTCGTCCCTATAGTGAGC-3′ was adenylated using
a 5′ adenylation kit (NEB) and ligated to the 3′ end using T4 RNA
Ligase 2, truncated KQ (New England BioLabs) (see exception noted
below). The ligated products were gel purified and reverse transcribed
using a 5′ Rhodamine Green-X-tagged reverse primer complementary
to a region of the adapter sequence (5′-CTCACTATAGGG-
ACGACGATGACAGCAGG-3′) and SuperScript III Reverse Tran-
scriptase (Thermo Fisher), with a 10 min extension at 55 °C. Reverse
transcripts were run on a 12% denaturing sequencing gel, scanned on
an Amersham Typhoon 5 Biomolecular Imager. The likely site of
truncation was identified by gel position from the primer (bands at
single nucleotide resolution could be visualized at high contrast; see
Supporting Figure S10). To verify specific 2′-OH positions, RNA
sequences containing 2′-O-methyl modifications were obtained from
IDT and tested for aminoacylation activity by streptavidin gel shift
(described above).

Sequences from families 1A.1 and 1B.1 were ligated to an
alternative adapter oligo (5′-AAAACGGGCTTCGGTCCGGTTC-
3′), as ligation to the original adapter oligo (listed above) was noted
to interfere with folding of these sequences. The corresponding RT
primer was 5′-GAACCGGACCGAAGCCCG-3′.

Degradation Rate of BYO. RNA sequence S-1A.1-a (Supporting
Table S1) was added to 250 μM BYO that was preincubated with
reaction buffer for 5−180 min. The initial rate of the reaction was
compared to the reaction kinetics for this sequence determined
without preincubation of BYO (see above). The effective concen-
tration of BYO at the start of reaction was calculated assuming a first-
order reaction (i.e., effective [BYO] = (250 μM × initial rate)/(ksAs),
where ksAs is the activity of the ribozyme without preincubation of
BYO), giving a half-life for BYO of 36.5 min. Reaction rates for
ribozymes were adjusted accordingly to account for lower effective
substrate concentrations (Supporting Text S3).

Ruggedness of Chemical Activity Peaks. We compute the d-
dependent epistatic correlation γd.

49 This parameter measures the
correlation between the effect of a certain mutation at locus j in
sequence s, Δj(s), and the effect of the same mutation in a d mutant
background (i.e., all sequence pairs separated by a distance d),

s( )j i i i... d1 2
Δ [ ] , averaged over all possible sequences s, mutations j, and d
mutant backgrounds s i i i... d1 2[ ]:

s s

s

. . . ( ) ( )

. . . ( ( ))d
s i i i i i j i i i j j i i i

s i i i i i j i i i j
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The effect of a mutation at locus j is measured as the change in (log-
scale) activity of sequence s, as s k A k A( ) ln( ) ln( )j s s s sj j

Δ = −
[ ] [ ]

. For

each pair of sequences having a certain mutation at a certain locus j,
we identify all possible d mutant backgrounds by finding every other
pair of sequences in the pool (Round 5, RS1) that (i) are at an edit
distance d + 1 from each other, and (ii) differ by the same mutation at
the same locus j. Data values from k-Seq with ksAs < baseline activity
were assigned the baseline value.

Evolutionary Pathways between Ribozymes. Evolutionary
pathways between two sequences (s1 and s2) were determined by
applying a modified A* search algorithm.93 The activity landscape
determined by k-Seq can be considered a graph of nodes (sequences)
connected by edges with weights equal to the edit distance between
two nodes. In general, the A* algorithm is an established search
method to find the lowest cost path from a starting node to the target
node. Sequences present in Round 5 with absolute sequencing count
≥2 were used as the set of possible node sequences. Beginning at the
starting sequence s1, paths were chosen for extension according to
minimization of the cost function f(s) = g(s) + h(s), where g(s) is the
mutational distance traveled along the path from s1 to sequence s and
h(s) is the edit distance from s to the target sequence s2. If more than
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one sequence gave the minimum f(s) value, these sequences were
prioritized according to the following criteria in order of decreasing
importance: (1) shortest average step distance, and (2) highest
minimum sequence abundance along the pathway. The best five
pathways from s1 to s2 were built with the shortest possible maximum
step distance (i.e., edit distance for one step). Five additional
pathways were built by allowing a step distance up to the previous
maximum +1. To decrease runtime in practice, the algorithm kept an
updated queue of sequences within a maximum edit distance of the
last node(s). Initially, this maximum edit distance was set at 1, but if
no pathway was found, this edit distance was increased by 1 until the
desired number of pathways was found. To prevent unreasonably long
search times, the search was terminated if f(s) > 42 (i.e., each
nucleotide being mutated more than twice on average). The algorithm
was implemented in Python. Pathway searches were conducted
between family centers of the top two families of motif 2, among the
top families of motifs 1A, 1B, and 1C, and among the top families of
each of the three motifs (Supporting Table S2). Cytoscape94 was used
to generate a landscape overview from pathway data.
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