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Cytologically, prokaryotes appear simpler and thus
evolutionarily ‘older’ than eukaryotes. In terms of RNA
processing, however, prokaryotes are sophisticated and
eukaryotes, which retain many features of an RNA-world,
appear primitive. The last universal common ancestor may have
been mesophilic and could have had many features of the
eukaryote genome, but its cytology is unknown.
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Abbreviations
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Introduction
The last universal common ancestor (LUCA) is the organism
at the root of the ‘tree of life’ the ancestor of all organisms
alive today [1••]. Estimating its properties helps understand
even earlier steps in the origin of life — it is a window fur-
ther back into time. Indeed, the usefulness of models of the
LUCA are judged by their ability to improve understanding
of these earlier steps, and models that make the origin of life
more difficult to resolve require reconsideration. 

The starting point for the tree of life has been the tripartite
division into the domains archaea, bacteria and eukarya, ini-
tially on the basis of 16S rRNA sequences [2]. The
horizontal transfer of genes between prokaryotes showed
that the situation could be more complex [3••,4•,5•]. On the
basis of function, genes are now classed as either informa-
tional or operational (Figure 1) [6••], Informational genes
are broadly defined as those involved in informational
processes, such as transcription, translation and replication,
while operational genes are those that code for metabolic
functions, such as enzymes involved in pathways for syn-
thesis or breakdown of metabolites. The general consensus
is that informational genes are less likely to be transferred
because their products usually form large multicomponent
complexes [3••], decreasing the likelihood of full interac-
tion with several other macromolecules. There is
considerable debate about the extent of horizontal (or lat-
eral) transfer: some work favours virtually none [7••],
whereas other authors favour huge transfers [8]. For the
purpose of review, we accept the basic tripartite division,
whilst still accepting significant horizontal transfer.

Assuming the tripartite division, the question of the nature
of the LUCA is two-fold: identifying the position of the
root of the tree of life and inferring its properties. The root
has six possible placings, three on branches leading to each
of the three domains, and three within any of the domains.
We discuss two approaches to rooting the tree of life: analy-
sis of sequence data (from single genes to complete
genomes), and using inferred properties of the RNA-world
as an outgroup. Finally, we emphasise the requirement for
applying known evolutionary mechanisms and selective
forces in building models of early evolution. This makes
the conclusions more general and increases the power of
the models. 

Rooting the tree of life
Sequence data
The standard method for rooting the tree of life is to build
from genes that duplicated before the LUCA arose; two
separate elongation factors [9] and two ATPases [10], each
found in all three domains, were initially used, both giving
a tree where the root lies between the bacteria and archaea-
eukarya, and therefore suggesting the LUCA was
bacterial-like. They both gave a tree in favour of a bacteri-
al LUCA, the root lying between the bacteria and
archaea–eukarya. This theory has recently been challenged
by Philippe and co-workers [11••,12••] using an improved
method for building trees for ancient divergences. They
built trees for each domain separately and from these sub-
trees ranked each site on its number of changes — from the
slowest to the fastest evolving. The next step is to build the
full tree for all three domains, starting first with just the
very slowest sites. These sites located the root as occurring
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Figure 1

Venn diagram of gene classes and their distribution. The broad consensus
from whole-genome data is that the tree of life can best be understood by
dividing all genes into two classes: informational (I) and operational (O).
Although all organisms obviously require both classes, eukaryotes and
archaea appear to resemble one another on the basis of similar
informational genes, whereas eubacteria and eukaryotes group together
at the exclusion of the eubacteria for operational genes. However, caution
is required because ‘similarity’ is affected by differences in rates of
evolution. Black and white boxes are included for clarity: black for I and O
genes from archea, white for those from eubacteria.
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between eukarya and archaea–bacteria. On the step-wise
addition of faster-evolving sites, the root eventually reverts
to between bacteria and archaea–eukarya. The interpreta-
tion is that the slowest evolving sites are giving the correct
position, and that the fastest sites succumb to the well-
known ‘long branches attract’ phenomenon, eventually
overwhelming the slowest-evolving sites. (See [13] for a
review of long branch attraction.)

These findings are challenging, though we caution against
over-interpreting analyses that involve either a single or a
small number of genes. It is well known that, even for
mammals, which diverged over the last 100 million years,
different genes give different (though statistically similar)
trees [14••]. Given numerous other cases where gene trees
are ambiguous [13], it is not to be expected that the rela-
tionships between all organisms on Earth (which diverged
3000–4000 million years ago [Mya]) can be determined
unambiguously from small numbers of genes. Problematic
genes could be removed from the analysis though a funda-
mental problem remains [15••]: any site that was free to
evolve over the whole period at, say, 0.5% change per every
million years will become saturated with 20–40 changes per
site. Detecting phylogenetic signal above noise for deep
divergences is thus difficult, making many proteins unsuit-
able for such phylogenetic studies [15••]. Other factors
worsen recovery: rate differences between lineages; long
branch attraction; horizontal transfer; unrecognised gene
duplications; changes in nucleotide frequency; and changes
in functional constraints [13,15••,16••]. 

Perhaps tree-building can be improved. Existing methods
incorrectly assume that each site retains its characteristic
rate of evolution across the whole tree but secondary and
tertiary structure evolves through time under a covarion
model [17•]. It has been proven for some proteins that the
distribution of changes between sites requires them to vary

in rate [17•] and although this is unexplored it may give
more reliable trees than current theory predicts. Despite
improved phylogenetic methods [11••,12••], alternative
systems for locating the root are desirable. An alternative
approach, examining molecular fossils from an earlier stage
of life, is considered next. Molecular fossils, or 'relics' can
be broadly defined as those parts of modern metabolism
which have persisted from an earlier stage in evolution. An
advantage over actual fossils is that these are 'living fossils',
of clear relevance to modern biology, though a difficulty is
that, since the time of their origins, they have been modi-
fied greatly or partially replaced, prompting analogies to a
palimpsest and the lingering smile of the Cheshire Cat! 

‘Molecular fossils’ from the RNA-world
Knowledge of the properties of organisms that preceded
the LUCA thus permits a different approach. The logic is
straightforward (Figure 2) but the question is to identify
such ‘relics’. The furthest back we can extrapolate from
modern life is to an RNA-world, where RNA carried out
both coding and catalysis [18,19••,20••]. As they pre-date
protein, any molecular fossil would be RNA-based and
ancient in function. A modern RNA is deemed a possible
relic if it is catalytic, or ubiquitous, or has a central role in
metabolism, or carries out a role equally well served by a
protein in other organisms [21••].

This approach is still relatively unexplored, though a
fairly detailed model is possible [21••]. As depicted in
Figure 3, the largest relic that can be reconstructed cen-
tres around the ribosome and translation. A general
pattern exists where RNPs (ribonucleoproteins) process
precursor RNAs, yielding mature RNA [19••]. In eukary-
otes, this processing pattern is most complete, with
tRNA, rRNA and mRNA each being produced via an
RNP-processing pathway (Figure 3). Prokaryotes lack
parts of this relic- processing pathway (shaded area in
Figure 3) [19••]. Indeed, we consistently find all putative
RNA-world relics in eukaryotes, with only a subset
remaining in prokaryotes.

A separate issue is the application of information theory to
understanding the origins of genome architecture in terms
of replication fidelity. Lower fidelity favours multiple
genome copies, a fragmented genome (as in chromo-
somes), and strong selection for recombination repair
[22,23], and is indicative of the earliest replication systems.
Eukaryotic genomes exhibit these hallmark low-fidelity
traits — in contrast, prokaryotes usually house all informa-
tion on one chromosome and are generally haploid, so
additional copies cannot mask mutation. Nor can mutation
be repaired by recombination in the absence of a homolo-
gous copy of the information. 

It is difficult to consider prokaryote genome architecture
and RNA processing as ancestral to that of eukaryotes as
prokaryotic genome architecture is high fidelity with little
RNA processing. This result and the new rooting the tree

Figure 2

RNA-world as an outgroup. If the tree of life is rooted between the
eukaryotes and archaea–bacteria then the nature of the LUCA is not
determined just from existing domains — it could be any number of
features of the existing groups (as in [a]). If a feature is inferred to be in
the RNA-world (e.g. snoRNAs), however, then it is an outgroup in that
it helps determine the nature of the LUCA (as in [b]). A, Archaea;
B, Bacteria; E, Eukarya.
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of life between eukarya and archaea-bacteriais consistent
with the conclusion that the genome architecture of the
LUCA more closely resembled that of eukarya. 

Thermoreduction and prokaryote origins
In postulating the nature of the LUCA, it is essential to
consider the selective forces that would give rise to either
prokaryotes or eukaryotes. Two selective forces that rein-
force each other have been proposed by which prokaryotes
could have evolved from an ancestor containing a eukary-
ote-like genome: thermoreduction and r-selection,
[20••,21••,24]. r-selected organisms are fast-growing, com-
peting for nutrient sources which fluctuate greatly in
abundance. Yeast is r-selected when compared to an oak
tree, which grows slowly, has a slow generation time and a
fairly constant nutrient source (and is thus K-selected), and
prokaryotes are r-selected relative to eukaryotes. r selec-
tion generally results in extremely fast and efficient use of
resources, because limited availability produces strong
competition for these. At the molecular level, the result is
that enzymes that affect metabolite utilisation and organis-
mal growth rate will be driven toward perfection at a faster
rate than in organisms not under r selection. Thus, r selec-
tion may at least account partially for the observed
replacement of RNA enzymes by protein in the prokaryote
lineages [20••,21••].

The thermoreduction hypothesis [24] is that prokaryotes
arose from mesophiles by adaptation, via the loss of ther-
molabile traits, to high-temperature environments. This
explains the loss of the ssRNA processing pathways
(Figure 3) dating back to the RNA-world. Single-stranded
RNA is heat labile, and would have been the Achilles’ heel
of early thermophiles. Accelerating ssRNA processing
(mRNA, tRNA and rRNA) from hours (eukaryotes) to min-
utes (prokaryotes) would increase the viability of an
organism at high temperatures. This loss of pre-mRNA pro-
cessing, as well as the replacement of snoRNA-mediated
rRNA processing with a protein enzyme system, would
have been important steps in the evolution of thermophily.

Unlike RNA, proteins are capable of extreme thermosta-
bility [25]. Furthermore, circular chromosomes are more
thermostable than linear [26].

Other important molecules, such as glutamine [27] and
carbamoyl phosphate [28], are also thermolabile.
Glutamine is a protein amino acid and major nitrogen
donor whereas carbamoyl phosphate is a crucial intermedi-
ate in the formation of pyrimidines and arginine. Pathways
where carbamoyl phosphate and/or glutamine are used
may have been affected by thermoreduction. For instance,
in the hyperthermophilic archaeon Pyrococcus furiosus, car-
bamoyl phosphate is used immediately after synthesis by
metabolite channelling, and has ammonia rather than glu-
tamine as amino donor [28]. A second example of metabo-
lite channelling is mischarging of glutaminyl–tRNA with
glutamate, thereby making glutamine synthesis the final
step before incorporation into protein; this is widespread
within the prokaryotes but absent from eukaryotes [20••].
Although the area requires more investigation, the distrib-
ution of these traits in archaea and bacteria is predicted by
the thermoreduction hypothesis. 

Another dataset consistent with the LUCA being mesophilic
comes from reconstructions of ancestral GC content. Galtier
et al. [29••] have estimated its GC content and find it much
lower than that characteristic of thermophiles. Moreover, a
comparable result was obtained using only the thermophiles
in their dataset. All work involving ancient sequence compar-
isons needs to be rigorously scrutinised but, in light of all the
above data, the result is compelling nonetheless. In addition,
that nucleotides themselves are unstable at high tempera-
tures [30•] is consistent with a more mesophilic origin of life.

Overall, the thermoreduction hypothesis predicts a mesophilic
LUCA with a genome and RNA-processing system more
characteristic of eukarya. The power of the thermoreduction
hypothesis is that it predicts a range of phenomena, rather than
relying on ad hoc explanations of individual phenomena. Fossil
dates do not contradict this picture because rocks from 2700
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Figure 3

The RNA processing pattern in eukaryotes
reflects that of the LUCA. An examination of
RNAs involved in translation reveals a striking
pattern. Precursor RNAs are processed by
RNPs (ribonucleoproteins—RNA plus cognate
protein) to yield mature RNAs. Furthermore,
RNPs process other RNPs — snoRNAs are
released by sn RNAs, the RNA component of
the splicing machinery, which in turn are
crucial for rRNA processing. In prokaryotes,
some of these RNAs have been lost (shaded
region), and indeed, in the case of pre-mRNA,
the processing step has been lost completely.
Eukaryotes have retained a more complete
record of the supposed RNA-world
processing pathway than have prokaryotes.
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Mya appear to have organic molecules characteristic of both
prokaryotes and eukaryotes retained [31••].

Integrating data from genomes
Although data gleaned from biochemical approaches
allows tentative reconstruction of the ‘bare bones’ LUCA,
whole genomes will ultimately uncover much more infor-
mation. Genomics allows metabolic traits to be compared
through the presence or absence of genes, and by
sequence comparisons. However, simple comparison of
the presence or absence of homologous genes does not
take into account the problems of gene loss or acquisition
by horizontal transfer. Initial reconstruction of the ‘mini-
mal gene set’ [32] highlights this caveat: being criticised
because it resulted in exclusion of de novo pathways for
deoxyribonucleotide synthesis, leading the authors to con-
clude that the LUCA had an RNA genome [33]. 

There is a difference between reconstructing the minimal
gene set for cellular life, and the set of genes which the LUCA
had. Greater caution is required when examining all three
domains, as eukaryotes received prokaryotic genes subse-
quent to the endosymbioses of mitochondria and chloroplasts

[34••,35••]. Replacement of unrelated, distantly related, or
paralogous genes by functional counterparts is ‘non-ortholo-
gous displacement’ [36] and ‘may’ be central to understanding
how the existing distribution of genes has arisen.

If we expect a eukaryote-like genome for LUCA as a starting
point, how does this then fit with the data on operational and
informational genes (Figure 1)? It is necessary to identify the
direction of transfer. The complexity hypothesis [3••] places
limits on gene transfer, such that we expect the transfer of
mostly the operational genes in explaining the apparent
chimerism. It has been suggested that acquisition of prokary-
otic operational genes by eukaryotes results from their diet
[37•]. There is no apparent selective advantage to such
uptake, however, even though the mechanism might con-
tribute to gene acquisition.

Another possibility is that the eukarya received the largest
number of bacterial operational genes from the mitochon-
drion [38••]. Two established evolutionary mechanisms
together favour this and are compatible with a eukaryal
root: the increased rate of evolution toward catalytic per-
fection under r-selection [19••,21••], and Müller’s ratchet.

Figure 4

Fitting the data to the trees. Given our current
understanding, several alternative trees could
fit the data without altering either main
conclusion. These are that the eukarya retain
the greatest amount of biochemical similarity
to the LUCA and that the prokaryotes have
been through a period of reductive evolution,
mainly through evolving to life at high
temperatures. Some possible trees are as
follows (episodes of thermoreduction and the
origin of mitochondria are indicated). (a) The
origin of eukarya (E) by fusion of a bacterium
(B) and an archeon (A) fits the informational (I)
and operational (O) gene distribution but is
hard to fit all the data. It does not explain the
origin of the nuclear membrane, however,
which is assembled and disassembled during
cell division, quite unlike organellar
membranes (see [21••]). (b) Rooting the tree
in the bacterial branch fits the data provided
the biochemistry of the LUCA is understood
to be more closely similar to that of modern
eukaryotes than that of eubacteria. A bacterial
rooting would require that the archaea and
bacteria arose independently via r-selection
and thermoreduction. (c) The classic 3-
domain tree can also fit the data, provided the
greater divergence of bacterial informational
genes can be ascribed to higher rates of
evolution. There would be transfer of
operational genes back into eukarya through
endosymbiosis. (d) The tree where the root is
on the eukarya branch is perhaps the simplest
with respect to the biochemical data. It is
consistent with all the other data, provided (as
for [c]) that the bacterial informational genes
are indeed evolving at a faster rate.
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Müller’s ratchet is the term given to the continual accu-
mulation of slightly deleterious mutations in lineages
lacking recombination. It has been shown that Müller’s
ratchet is active in organelles [39] and that it drives the
gene loss there (and also from obligate intracellular para-
sites) [34••,35••]. Most importantly, relocation of organellar
genes to the nucleus benefits both host and symbiont. If
the action of Müller’s ratchet on the organelle drives gene
loss, this can compromise the host-endosymbiont relation-
ship and thus there is selection to relocate useful genes to
the nucleus, where mutation rate is lower. The majority of
endosymbiont genes were not expected to fit this catego-
ry, however, and it was assumed these were lost over time,
since equivalent functions already resided in the nucleus;
but the simplest explanation of the evidence is that many
were transferred [38••].

Figure 4 illustrates that the bioinformatic data, the RNA
relic data, plus the evolutionary mechanisms that gave rise
to the three domains can still fit several trees. Thus even
with the nature of the LUCA, the branching order of the
universal tree is not yet sufficiently informative to resolve
all the issues. This is because each domain is a mono-
phyletic group, so the basal branches of the tree (dividing
the domains) can only take on a very limited number of
trees. Hence, the metabolic data set cannot be used as an
unambiguous outgroup for rooting the tree. 

Conclusions
An interesting picture of the LUCA is emerging. It was a
fully DNA and protein-based organism with extensive pro-
cessing of RNA transcripts by RNPs (Figure 3). It had an
extensive set of proteins for DNA, RNA and protein syn-
thesis, DNA repair, recombination, control systems for
regulation of genes and cell division, chaperone proteins,
and probably lacked operons. Biochemistry favours a
mesophilic LUCA with eukaryote-like RNA processing,
though it is still possible to fit the data to several different
trees (Figure 4). A eukaryote-like LUCA is not a new idea
and can be traced back to Reanney [40].

Details of energy source(s) are unclear, partly because
operational genes apparently undergo frequent horizontal
transfers. Comparative genomics promises a clearer picture
but apparent intermingling of lineages via horizontal trans-
fer is a major obstacle [38••]. Increasingly, models need to
fit our understanding of evolutionary theory and popula-
tion genetics -it is essential to have plausible mechanisms
and selective forces. The extent and direction of horizon-
tal gene transfer needs accurate estimates before
concluding the theory of descent does not hold for the ear-
liest divergences [8,42,43]. Nevertheless, it is unclear
whether the LUCA was a single 'species' or whether there
was extensive horizontal transfer between divergent life
forms. An outstanding issue is the origin of nuclear/cyto-
plasmic compartmentation as the concentration of RNA
relics within the nucleus suggests this organelle is more
ancient than previously supposed.
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