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Abstract

The transition from independent molecular entities to cellular structures with integrated behaviors 

was a crucial aspect of the origin of life. We show that simple physical principles can mediate a 

coordinated interaction between genome and compartment boundary, independent of any genomic 

functions beyond self-replication. RNA, encapsulated in fatty acid vesicles, exerts an osmotic 

pressure on the vesicle membrane that drives the uptake of additional membrane components, 

leading to membrane growth at the expense of relaxed vesicles, which shrink. Thus, more efficient 

RNA replication could cause faster cell growth, leading to the emergence of Darwinian evolution 

at the cellular level.

A simple model of a primitive cell involves a self-replicating genome, such as an RNA 

polymerase ribozyme (a “replicase”), and an encapsulating membrane that can grow and 

divide (1) (supporting online text). Genomic influence over vesicle growth has been 

assumed to require a second RNA function, such as a ribozyme that would synthesize 

membrane components (2). Although such molecules presumably evolved at some point, we 

wondered whether the transition to a unified cell might have been facilitated by simpler 

physical mechanisms for coupling genomic properties and membrane behavior.

We sought to detect the emergence of an adaptive cellular-level trait based on the physical 

properties of a model prebiotic vesicle system containing encapsulated nucleic acids. 

Counterions associated with RNA encapsulated by a semipermeable membrane exert 

osmotic pressure on the membrane, which is counterbalanced by membrane tension. RNA 

replication would convert freely diffusing nucleic acid monomers into large impermeable 

macromolecules, increasing the concentration of trapped counterions. The resulting increase 

in osmotic pressure and membrane tension would create a driving force for an increase in 
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membrane area, thereby coupling RNA replication to membrane growth (supporting online 

text).

We tested whether fatty acid vesicles (3–5) (supporting online text) osmotically stressed by 

encapsulated contents would increase in membrane area at the expense of unstressed 

vesicles. An initial concern was that fatty acid membranes might be too structurally weak to 

maintain a substantial osmotic gradient. We therefore determined the maximum sustainable 

membrane tension of oleate (C18:1) vesicles under osmotic stress. Oleate vesicles (100-nm 

diameter) encapsulating 1 M sucrose were diluted into hypotonic buffers (6). Applied 

gradients ≥0.7 M caused transient membrane rupture and release of solutes, detectable by 

size-exclusion chromatography, followed by membrane resealing at a maximal sustainable 

membrane tension (τ*oleate). After accounting for vesicle swelling from the extruded non-

spherical shape to a spherical shape (7, 8) and the partial loss of encapsulated solutes, we 

estimate that τ*oleate is 10 dyn/cm, or 4 atm. A similar experiment with 100 nm POPC (1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) vesicles showed that τ*POPC is 25 dyn/cm 

(supporting online text). These measurements fall within the range previously reported for 

phospholipid membranes (3 to 40 dyn/cm) (9–11). Thus, fatty acids, though chemically 

simple, can indeed form surprisingly strong membranes under osmotic stress.

We then performed competition experiments between swollen and isotonic vesicles. Low-

osmolarity (isotonic) oleate vesicles were prepared in buffer without sucrose. High-

osmolarity (swollen) vesicles were prepared by encapsulating sufficient osmolyte (e.g., 1 M 

sucrose) to generate the maximal sustainable membrane tension upon dilution into buffer. 

The two vesicle preparations were mixed in a stopped-flow device, and membrane surface 

areas of the swollen and isotonic vesicles were monitored in separate experiments using a 

fluorescence resonance energy transfer (FRET)–based assay (6 ). We observed that the 

membrane area of swollen oleate vesicles increased and the membrane area of isotonic 

vesicles decreased in parallel by ~25% when mixed in a 1:1 ratio (Fig. 1, A to D), following 

first-order kinetics (koleate ~ 0.1 s−1). Vesicle fusion, which would result in FRET decreases 

for both vesicle populations, does not explain the observed changes. No pronounced changes 

in FRET were seen upon mixing vesicles of equal osmolarity or mixing vesicles with buffer 

alone. Similar experiments with POPC vesicles showed no changes in FRET over several 

hours (Fig. 1, E and F), as expected from the very low vesicle-vesicle exchange rates of 

phospholipids (12, 13).

The above results show that vesicles with high internal osmotic pressure can acquire 

membrane from isotonic vesicles. These isotonic vesicles can lose membrane until they 

become spherical, but further membrane loss requires a volume decrease and concomitant 

concentration of their impermeable contents. The resulting osmotic gradient should 

eventually limit the redistribution of fatty acid. Indeed, as more swollen vesicles were added 

to a fixed number of initially isotonic vesicles, membrane loss reached a plateau (Fig. 2A). 

The maximum observed membrane loss from initially isotonic vesicles (~35%) was 

somewhat larger than the estimated membrane loss necessary to adopt a spherical shape 

(~27%; supporting online text), indicating that initially isotonic vesicles lost membrane until 

they also built up some osmotic gradient. Conversely, swollen vesicles, in the presence of 

excess isotonic vesicles, should grow until the membrane tension reaches zero, which we 
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calculated should occur after a 35% surface area increase; the maximum observed increase 

was ~35%.

To examine the mechanism of fatty acid transfer among vesicles, we tested the role of 

vesicle-vesicle collisions by varying the concentration of vesicles, but no rate changes were 

observed. Because the initial rate of uptake of fatty acid from micelles into vesicles can be 

quite fast compared with the observed rate of exchange (14), fatty acid adsorption is unlikely 

to be rate-limiting. We also tested the role of fatty acid desorption from vesicles, which 

becomes faster as chain length decreases (15). Myristoleate vesicles (C14 :1) showed faster 

exchange (kmyristoleate ~ 0.6 s−1). Exchange rates were also slower than fatty acid flip-flop 

rates (16). These observations indicate that exchange may be rate-limited by desorption, 

consistent with previous results on phospholipid transfer among liposomes (12, 17).

Having established that encapsulated osmolytes could drive vesicle growth at the expense of 

isotonic vesicles, we turned to vesicles that were osmotically swollen by encapsulated 

nucleic acids. Efforts to encapsulate high concentrations of nucleic acids (>0.1 M nucleotide 

monophosphate equivalents) in pure fatty acid vesicles caused visible aggregation and 

contents leakage. Because the addition of glycerol monoesters to fatty acid membranes has 

been reported to increase vesicle stability in the presence of high salt concentrations (18), we 

encapsulated nucleic acids in myristoleate:glycerol monomyristoleate (MA: GMM = 2 :1) 

vesicles, which were stable (supporting online text).

Initial competition experiments with MA:GMM vesicles were done using vesicles 

containing 0.2 M uridine 5′-mono-phosphate (5′-UMP) (~0.6 osmolar) (supporting online 

text). Growth of swollen vesicles and shrinkage of isotonic vesicles were observed as before 

(Table 1). The rate of exchange was substantially slower (kMA:GMM ~ 0.1 min−1), consistent 

with the expected slower desorption rate from the more stable membranes. We confirmed 

that the difference between koleate and kMA:GMM quantitatively reflected the difference 

between the rate of lipid exchange in oleate versus that in MA:GMM vesicles using a self-

quenching fluorescent fatty acid, octadecyl rhodamine B (R18) (6 ). Dilution of R18 among 

vesicles was detected as an increase in fluorescence (Fig. 2, B and C). The rate constant of 

R18 transfer in oleate vesicles (kR18
oleate) was 3.0 min−1, whereas kR18

MA:GMM was 0.06 

min−1 (supporting online text). The fluorescence of R18-labeled vesicles did not change 

after mixing with buffer alone. These rate constants are in good agreement with the 

corresponding rate constants of osmotically driven lipid exchange.

Membrane transfer to swollen vesicles was also observed when the osmolyte was a 

heterogeneous mixture of RNA oligomers obtained by alkaline hydrolysis of bulk RNA (93 

mg/ml; ~0.29 M nucleotide equivalents), which were 1 to 40 nucleotides in length as 

estimated by high-performance liquid chromatography. Finally, we observed membrane 

transfer using vesicles osmotically swollen by tRNA (83 mg/ml; ~0.26 M nucleotide 

equivalents), which has a length (72 to 95 bases) comparable to that of many ribozymes (19) 

(Fig. 3) (supporting online text).

The concentrations of nucleic acids that produce this effect are biologically reasonable. In 

general, the concentration of genomic nucleic acid in a unicellular organism increases as the 
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size of the organism decreases. For one of the smallest bacteria, Mycoplasma genitalium 

(~300 nm in diameter), the concentration of DNA alone is 100 mg/ml (0.32 M nucleotide 

equivalents) (20). In a larger bacterium, Escherichia coli, the concentration of DNA is 13 

mg/ml, and the combined concentration of DNA and RNA is ~130 mg/ml (0.4 M nucleotide 

equivalents) (21). The RNA concentrations used in our osmotically driven growth 

experiments fell within this range.

Our results show that osmotically swollen fatty acid vesicles can grow at the expense of 

relaxed (isotonic) vesicles. We have attempted to model the behavior of a primitive cell in 

which an RNA genome encodes functional RNA, but the same principles would apply given 

any other charged genetic polymer. In contrast, a neutral polymer such as PNA (peptide 

nucleic acid), having no associated counterions, would be a much less effective osmolyte, a 

difference that may have influenced the natural selection of the genetic material itself. We 

suggest that the phenomenon of osmotically driven, competitive vesicle growth could have 

played an important role in the emergence of Darwinian evolution during the origin of 

cellular life (supporting online text). The present results suggest that simple physical 

principles may allow a direct connection between genome and membrane. RNA replicating 

within vesicles could confer a substantial growth advantage to the membrane by creating 

internal osmotic pressure. The faster replication of a superior replicase would therefore lead 

to faster vesicle growth, at the expense of cells lacking RNA or containing less efficient 

replicases. A faster replicase genotype would thus produce the higher-level phenotype of 

faster cellular growth, a prerequisite of cellular replication (supporting online text). 

Darwinian evolution at the organismal level might therefore have emerged earlier than 

previously thought—at the level of a one-gene cell.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Stopped-flow mixing of isotonic and swollen oleate vesicles (1:1 molar ratio) in 0.2 M 

bicine, pH 8.5. Relative surface area was measured by the FRET assay; membrane growth 

decreases probe density, causing the FRET signal to decrease. Isotonic vesicles, labeled with 

FRET dyes, were mixed with unlabeled isotonic (A) or swollen (B) vesicles. The solid line 

indicates a single exponential decay curve fit with rate constant k = 0.09 s−1. Swollen 

vesicles, labeled with FRET dyes, were mixed with unlabeled swollen (C) or isotonic (D) 

vesicles. The solid line indicates the single exponential curve fit (k = 0.08 s−1). Isotonic (E) 

or swollen (F) POPC vesicles, labeled with FRET dyes, were mixed with unlabeled isotonic 

(open circles) or swollen (solid circles) POPC vesicles.
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Fig. 2. 
(A) Change in surface area of isotonic vesicles mixed with different ratios of swollen 

vesicles, measured by FRET assay. Error bars indicate 95% confidence intervals for at least 

three trials. Time scale of intervesicular exchange of R18 in oleate (B) or MA:GMM (C) 

vesicles, measured by fluorescence dequenching. (B) Solid line indicates the single 

exponential curve fit (k = 3.1 min−1). (C) Solid line indicates a single exponential curve fit 

(k = 0.06 min−1).
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Fig. 3. 
Intervesicle competition using tRNA to swell MA:GMM vesicles. Isotonic (A) or swollen 

(B) vesicles were labeled with FRET dyes and mixed with unlabeled swollen vesicles 

pressurized by tRNA (open circles), isotonic vesicles (solid circles), or buffer only 

(triangles). (A) Solid line indicates a single exponential curve fit (k = 0.09 min−1). (B) Solid 

line indicates a single exponential curve fit (k = 0.1 min−1).

Chen et al. Page 8

Science. Author manuscript; available in PMC 2015 June 29.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

Chen et al. Page 9

Table 1

Intervesicle competition reactions using RNA osmolytes.

Osmolyte FRET-labeled vesicles (low or high osmolarity) % surface area change k (min−1)

5′-UMP low − 45% 0.05

high + 36% 0.02

Oligo-ribonucleotides* low − 64% 0.03

high + 51% 0.02

tRNA low − 23% 0.1

high + 21% 0.1

*
Vesicles swollen by oligomers appeared to exchange more membrane than vesicles swollen by other osmolytes, an effect possibly due to salts or 

other minor components of bulk yeast RNA.
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