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Respiration is fundamental to the aerobic and anaerobic energy metabolism of many prokaryotic and most
eukaryotic organisms. In principle, the free energy of a redox reaction catalysed by a membrane-bound
electron transport chain is transduced via the generation of an electrochemical ion (usually proton) gradient
across a coupling membrane that drives ATP synthesis. The proton motive force (pmf) can be built up by
different mechanisms like proton pumping, quinone/quinol cycling or by a redox loop. The latter couples
electron transport to a net proton transfer across the membrane without proton pumping. Instead, charge
separation is achieved by quinone-reactive enzymes or enzyme complexes whose active sites for substrates
and quinones are situated on different sides of the coupling membrane. The necessary transmembrane
electron transport is usually accomplished by the presence of two haem groups that face opposite sides of the
membrane. There are many different enzyme complexes that are part of redox loops and their catalysed
redox reactions can be either electrogenic, electroneutral (non-proton motive) or even pmf-consuming. This
article gives conceptual classification of different operational organisations of redox loops and uses this as a
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platform from which to explore the biodiversity of quinone/quinol-cycling redox systems.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Respiration is a catabolic process that is fundamental to all
kingdoms of life [1]. In human mitochondria, the ATP factories of
our cells, electrons are extracted from organic carbon as it is
catabolised through metabolic pathways such as glycolysis and the

Abbreviations: DMSO, dimethylsulfoxide; FAD/FADH,, oxidised/reduced flavin
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protons translocated across the coupling membrane and the amount of electrons
transported in the accompanying redox reaction; MK/MKH,, menaquinone/menaqui-
nol; MKK, methyl-menaquinone; MP/MPH,, methanophenazine/dihydro-methanophe-
nazine; Mo-bis-MGD, molybdenum-bis-molybdopterin guanine dinucleotide; N,
negatively charged side of the coupling membrane; NAD*/NADH, oxidised/reduced
nicotinamide adenine dinucleotide; Nap, periplasmic nitrate reductase system; Ni/Fe,
catalytic Ni/Fe centre of hydrogenase; Nrf, cytochrome c nitrite reductase system; P,
positively charged side of the coupling membrane; pmf, proton motive force; PQQ,
pyrroloquinoline quinone; Q/QH,, (ubi- or mena-) quinone/(ubi- or mena-) quinol;
SQO, succinate:quinone oxidoreductase; TMAO, trimethylamine-N-oxide; TMS, trans-
membrane (a-helical protein) segment
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tricarboxylic acid cycle. The electrons are then passed via freely
diffusible carriers, such as NADH, or protein-bound carriers, such as
FADH,, into a multi-protein electron transport pathway associated
with the inner mitochondrial membrane (Fig. 1A). Here the electrons
migrate through a range of electron transferring redox cofactors, such
as flavins, iron sulfur clusters, haem and copper centres, that are
bound to integral membrane or membrane-associated protein com-
plexes, and ultimately reduce oxygen to water. Electrons that enter the
electron transport pathway have a low electrochemical potential. For
example, the midpoint redox potential (termed Ey’ at pH 7.0) of the
NAD*/NADH redox couple is around -320 mV, thus making NADH a
strong reductant. By contrast, the Ey’ of the O,/H,0 couple is around
+820 mV, making it strongly oxidizing. Electrons thus flow ‘downhill’
in energy terms from NADH to oxygen and the free energy (AG)
released during this electron transfer process is used to drive the
translocation of protons across the inner mitochondrial membrane to
generate a transmembrane electrochemical proton gradient or proton
motive force (pmf) (Fig. 1A) [2-4]. The pmf has both a chemical (ApH,
dimensionless) and an electrical (Ay, dimension: mV) component.
Eq. 1 shows the corresponding formula in its simplest form.

pmf(mV) = Ay-59 ApH (1)

Here, Ay is defined as the electrical potential difference between
the positively and the negatively charged (P and N) side of the
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Fig. 1. Different mechanisms of pmf generation. (A) Schematic architecture of selected protein complexes involved in aerobic respiration, e.g. in mitochondria or in the bacterium P.
denitrificans. (B) Dissection of principle mechanisms of pmf generation by intra- and interenzymic electron transport. Boxes represent electron transport enzymes or enzyme
complexes in the membrane. Left, coupling ion pumping. Middle, proton translocation coupled to quinone redox chemistry. Right, pmf generation arising from divergent substrate site
location without actual proton translocation. (C) The electron transport chain of anaerobic nitrate respiration with formate as electron donor in E. coli as a prototype of a two-enzyme full
proton motive redox loop. The redox loop is a result of a combination of the proton translocation modes shown in the middle and on the right of (B). The structural models were prepared
using PyMol and pdb files 1KQG and 1Q16. See Section 3 for details on enzyme architecture. P and N refer to the positively and negatively charged side of the membrane, respectively.
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membrane and is usually positive. The ApH is defined as the pH
difference between the P and the N side and is usually negative. Since
the pmf has a value in the range of ~150-200 mV, a potential change
(AE) of at least this magnitude during transfer from donor to acceptor
is required if that step is to be coupled to pmf generation (H*/e”=AE/
pmf at 100% thermodynamic efficiency). Overall, the transfer of 2
electrons from NADH to oxygen results in 10 positive charges being
translocated across the membrane and there are three key proton
motive steps that contribute to this: (I) the NADH dehydrogenase
complex (NADH:ubiquinone oxidoreductase) which is a proton pump,
(I1) the cytochrome bc; complex (ubiquinone:cytochrome ¢ oxidor-
eductase) that moves positive charge across the membrane via the so-
called Q-cycle and (IIl) the cytochrome c oxidase (aas-type), which
combines proton pumping with opposite electron and proton move-
ments (Fig. 1A). This basic description of respiration is also
fundamental to the bacterial and archaeal kingdoms of life, with one
key difference. In Bacteria and Archaea, a diverse range of organic and
inorganic substrates can be used to donate or accept electrons at
various electrochemical potentials in order to drive aerobic or
anaerobic respiratory electron transport systems [5].

In many mitochondrial and bacterial respiratory systems the link
between the electron donating enzymes and the electron accepting
enzymes is the quinone pool (Fig. 1). Quinones are small, freely
diffusible, lipophilic, membrane-entrapped organic molecules that
can carry 2 electrons and 2 protons when fully reduced, i.e. in the
quinol state. Different kinds of quinones have different electrochemi-
cal potentials and many bacteria can synthesise more than one type of
quinone. In general, where an organism can synthesise two quinone
types, ubiquinone [Eq’ (UQ/UQH;) ~+40 mV] predominates under
aerobic conditions and menaquinone [Ey’ (MK/MKH,) ~-80 mV]
predominates under anaerobic conditions when the cellular state is
more reduced. In certain Archaea the basic function of quinones is
replaced by phenazine-based compounds. Inspection of Fig. 1 reveals
that the active site of the respiratory enzymes for reductants and
oxidants can be located at either the P or N side of the membrane
across which the pmf is generated. This applies equally to the active
sites for quinone and quinol turnover. The different locations of the
active sites of respiratory enzymes in different cellular compartments
introduce some rather interesting considerations for mechanisms by
which electron transfer from donor to acceptor substrates can be
coupled to pmf generation. These are addressed by the redox loop
concept. The basic facet of a redox loop, as originally envisaged by the
Nobel Laureate Peter Mitchell in his chemiosmotic hypothesis, was the
separation of positive and negative charges across the energy-
conserving membrane [6]. Such charge separations do not require
the proteins involved to operate as proton pumps (Fig. 1B, left), but
rather to operate as part of redox loops that provide electron-
transferring molecular scaffolds across the membrane that facilitate
the movement of electrons from the P to the N side of the membrane,
hence contributing to the membrane potential component of the pmf
through an electrogenic redox loop (Fig. 1B, middle and right). Such
redox loops often consist of two quinone-reactive (multi-subunit)
enzymes and a quinone species that serves as redox mediator
between them (Fig. 1C; note that reactions catalysed by one such
enzyme have been occasionally termed “proton motive redox half
loop” or “electron-carrying arm of a redox loop”). In principle, the
different localisation of the electron donor/acceptor and quinone/
quinol centres allows for electrogenic, electroneutral [“non-proton
motive redox (half) loop”] or even energy-dissipating reactions.

The great diversity in bacterial and archaeal respiration underlies
the critical contribution of prokaryotes to the Earth's biogeochemistry.
There are currently more than 600 complete or near-complete
genome sequences of prokaryotic organisms, which provide a huge
database to explore the biochemical diversity of mechanisms by
which the AG released during respiratory electron transfer can be
transduced in a pmf. Redox loops are commonly found in anaerobic

respiratory systems where the AG value of the redox reaction is
smaller than in aerobic respiration and where, consequently, shorter
respiratory chains and less ion pumping enzymes are employed. The
purpose of this article is to survey the possible mechanisms by which a
pmf may conceptually be maintained by quinone-dependent respira-
tory systems and to assess how many such ‘conceptual systems’ have
been identified or can be inferred from data currently available in the
literature. The review focuses on the topological organisation of
different quinone-reducing and quinol-oxidising systems in biological
membranes of Bacteria and Archaea and discusses the consequences
of this organisation for bioenergetics in terms of energy transduction
or dissipation. Note that components of typical ‘mitochondrial-like’
aerobic respiratory chains will not be dealt with apart from succinate:
quinone dehydrogenases. Likewise, established proton-pumping
enzymes or systems using Na* as coupling ion are not within the
scope of this article.

2. Configurations of quinone reducing and quinol oxidizing
enzyme systems involved in redox loops

Conceptually, we propose that enzymes involved in redox loop
mechanisms can be classified into at least nine operationally different
types (designated (D to @ in the schemes of Fig. 2 and exemplified in
Table 1). These are differentiated on the basis of the location of the
active sites for the electron donor or electron acceptor on the P or N
sides of the membrane, the location of the quinone/quinol binding site
on the P or N sides and the direction of electron transfer (P to N or N to
P). If needed, transmembrane electron transport can be achieved by
the presence of two haem b groups that are oriented towards
different sides of the membrane (see configurations (D, @, 5, ® and
© in Fig. 2).

2.1. Quinone reduction and donor:quinone dehydrogenase configurations

The conceivable configurations of donor:quinone dehydrogenases
are shown in Fig. 2A (types @ to @, see Table 1 for examples). The
proton motive system of the formate dehydrogenase depicted in Fig.
1C falls into group @ (H*/e”=1) in which the donor oxidation and
quinone reduction sites are located at opposite sides of the
membrane. As stated above, not all non-proton translocating quinone
reducing systems are directly coupled to pmf generation. Type 2
shows a non-proton motive enzyme in which both the donor
oxidation site and quinone reduction site are located at the P side
of the membrane (H*/e"=0). An example of such an enzyme system
would be the electron transport pathway from periplasmic hydro-
xylamine oxidoreductase via periplasmic cytochrome css4 to mem-
brane-anchored cytochrome cyss, that couples hydroxylamine
oxidation to ubiquinone reduction in nitrifying bacteria (Table 1).
Note that the components of such an electron transport chain do not
necessarily form a permanent membrane-bound complex and that,
consequently, the quinone reductase could be the only membrane-
integral protein. Another system where the donor dehydrogenase and
quinone reductase site are located on the same side of the membrane
occurs when they are both located on the N side (configuration (3).
Despite being again non-proton motive (H/e"=0), it is rather
commonly found, e.g. in the succinate dehydrogenase complex of
mitochondria (complex II) and in functionally equivalent enzyme
complexes of bacteria (Table 1). Finally, there is a configuration
whereby the donor site is on the N side of the membrane and the
quinone reduction site is on the P side (type @). This system is
dependent on the pmf and consumes it during catalysis (H*/e"=-1,
“reverse redox loop”). Representatives for this mechanism are
succinate:menaquinone dehydrogenases from Gram-positive bacteria
and some sulfate reducers (e.g. Desulfovibrio vulgaris) whose
membrane anchor subunits contain two haem b groups allowing for
the functionally required transmembrane electron transport (Table 1).
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Fig. 2. Configurations of quinone-reducing (A) and quinol-oxidizing (B) electron transport enzymes. The enzymes are classified according to the binding site localisation for the
electron donor (DH,), electron acceptor (A), quinone (Q) and quinol (QH,). Quinone-dependent substrate turnover results in either electrogenic (green, H*/e”=1), electroneutral
(blue, H*/e"=0) or pmf-dissipating (red, H*/e"=-1) overall reactions. Prototypic enzymes or enzyme complexes exemplifying each configuration are presented in Table 1. In principle,
quinone could be replaced by a phenazine (derivative) or a similar carrier. Haem b groups in brackets denote that these are not obligatorily present.

2.2. Quinol oxidation and quinol:acceptor reductase configurations

Conceptual arrangements for quinol oxidising systems are shown in
Fig. 2B (types (® to (9, see Table 1 for examples). Type @ illustrates the
example where quinol is oxidised at the P side and electrons are passed
to the N side (H'/e"=1). This is the energy-conserving mechanism
described for the membrane-bound nitrate reductase in Fig. 1C. In type
®, quinol is oxidised at the P side and the electrons pass to an acceptor
site also located on the P side of the membrane. This type is found in
many different electron transport systems and is exceptionally wide-
spread in the prokaryotic world. Examples include the abundant NapC/
NrfH, NapH and NrfD/PsrC families whose prototypic members
function in periplasmic nitrate and nitrite reductase systems (Table
1) [7]. Type @ illustrates an example of quinol oxidation and acceptor
reduction both taking place on the N side of the membrane. An
example of this is the structurally resolved menaquinol:fumarate
reductase from E. coli. No pmf generation is associated with either type
® or (@ since in both cases the negative and positive charges are not
separated across the membrane. The configuration illustrated by type
resembles type (?), except that the quinol oxidation site is situated on
the P side. Here, acceptor reduction by quinol, which in itself is
electrogenic (resembling type @), is accompanied by a compensatory
proton transfer from the P to the N side making the overall reaction
electroneutral (H/e"=0). This is exemplified by the menaquinol:
fumarate reductase complex from the e-proteobacterium Wolinella
succinogenes where the compensatory (i.e. uncoupling) proton flux is
attained by the ‘E-pathway’ (see Mechanism D in section 3 for details).
Finally, there is a configuration with the quinol site on the N side of the
membrane and the electron acceptor site on the P side (type ®). This

system would be pmf-consuming (H*/e"=-1) but there are currently
no clear examples of this occurring.

3. The coupling of quinone reduction and quinol oxidation

Donor:quinone dehydrogenases and quinol:acceptor reductases
have to be coupled together to create simple electron transport chains
that produce a pmfby making use of proton motive redox (half) loop(s).
With the quinone-reactive enzymes presented in Fig. 2, six different
pmf-generating electron transport chains are conceivable and pre-
sented as mechanisms A-F in Fig. 3. Note that the pmf-consuming
enzymes are not covered by these mechanisms since a respiratory
chain that involves such an enzyme would need at least one proton-
pump to make the overall reaction electrogenic. Accordingly, the type
@ succinate:menaquinone dehydrogenase of Gram-positive bacteria is
part of the aerobic respiratory chain [8].

3.1. Mechanism A

This mechanism, depicted in Fig. 3A, is the full proton motive redox
loop (H*/e"=2) that derives from coupling together two pmf-
generating enzymes (types @ and @) and cycling quinone/quinol
between them. This mechanism is presented here in more detail with
reference to two membrane-bound enzyme complexes from E. coli,
the formate dehydrogenase (Fdh-N or FAnGHI complex) and nitrate
reductase A (NarA or NarGHI complex) that together form the
paradigmatic Fdh-Nar full redox loop (Fig. 1C) [9].

The E. coli NarA enzyme provides a classical example where a
recently obtained crystal structure ultimately confirmed early
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Table 1
Examples of the enzyme configurations presented in Fig. 2
Enzyme Quinone- or MP-reactive protein (subunit) Redox partner (cofactors), mode of interaction, representative organism(s) and enzyme References
class and mode of membrane interaction® (complex) designation®
Type @® Fdnl (FdhC/Fdol)
4 TMH (His: 1-1-0-243) FdnGH (FdhAB/FdoGH) (Mo, Fe/S); formation of membrane-bound formate dehydrogenase complex, [9, 51-53]
E. coli (Fdh-N and Fdh-0); W. succinogenes (FAdhABC)
HydC
4 TMS (His: 1-1-0-243) HydBA (Ni/Fe, Fe/S), formation of membrane-bound Ni/Fe-hydrogenase complex, W. succinogenes (HydABC)  [51,54]
VhoC (VhtC)
5 TMS (His: 1-1-0-0-2;3) VhoAG (VhtAG) (Ni/Fe, Fe/S), formation of a membrane-bound and MP-reactive F4»0-nonreducing hydrogenase [15]
complex. The presence of two haem b groups has not been shown experimentally. Methanosarcina spp.
Type @ Cytochrome cyssz ° Periplasmic cytochrome css4 or hydroxylamine oxidoreductase, transient interaction, Nitrosomonas europaea  [55,56]
Sqr
No predicted TMS Membrane-attached sulfide:(ubi)quinone oxidoreductase (FAD) that forms polysulfide in the periplasm, [57]
Rhodobacter capsulatus.
Gdh/Asd
No predicted TMS Periplasmic soluble glucose/aldose sugar dehydrogenase (PQQ) predicted to be part of a periplasmic electron [58]
transfer system feeding electrons into the ubiquinone pool. E. coli.
Type @ SdhC/SdhD
3 TMS each (His: 1-1-0 in both SdhC SdhAB (FAD, Fe/S), formation of membrane-bound succinate:(methyl-) menaquinone dehydrogenase complex [60]
and SdhD) (Type A SQO with 2 haem b [59]), Thermoplasma acidophilum, Natronobacterium pharaonis, Halobacterium salinarum
SdhC/SdhD
3 TMS each (His: 0-1-0 in both SdhC SdhAB (FAD, Fe/S), formation of membrane-bound succinate:ubiquinone dehydrogenase complex (Type [42,61]
and SdhD) C SQO with 1 haem b [59]), eukaryotic mitochondria and bacteria like E. coli and P. denitrificans
SdhE/SdhF SdhAB (FAD, Fe/S), formation of “non-classical” membrane-bound succinate:caldariella quinone dehydrogenase [60]
complex (Type E SQO [59]), Acidianus ambivalens, Sulfolobus acidocaldarius. SAhE contains a characteristic “CCG
motif” comprising ten conserved cysteine residues. Note that SAhE and SdhF are often erroneously designated
SdhC and SdhD in data bases.
DoxD/DoxA
4 TMS in DoxS, 1 TMS in DoxA Membrane-bound tetrathionate-forming thiosulfate:quinone (oxido) reductase (TQO). The purified enzyme  [62]
contains caldariella quinone and sulfolobus quinone (CQ-6 and SQ-6) and probably forms a short electron
transport chain with a CQ:0, oxidoreductase. Acidianus ambivalens. Cytoplasmic thiosulfate oxidation is likely.
The doxDA genes are fused in Acidithiobacillus ferrooxidans and Bacteroides species.
GIlpC
No predicted TMS GIpAB (FAD/FEMN), anaerobic sn-glycerol-3-phosphate dehydrogenase. GIpC contains two cysteine clusters [63]
typical for Fe/S binding and two “CCG” signatures. E. coli
Ndh
No predicted TMS Single subunit non-electrogenic (alternative) NADH:ubiquinone oxidoreductase (Type Il Ndh, Ndh-2) (FAD). E. coli [48]
GlpD, PoxB, DId (LctD), DadA
No predicted TMS Aerobic sn-glycerol-3-phosphate dehydrogenase; pyruvate oxidase (FAD), aerobic lactate dehydrogenase; [63]
D-amino acid dehydrogenase. Single membrane-associated but mostly hydrophilic proteins. E. coli
ETF:ubiquinone oxidoreductase (ETF-QO) Acyl CoA dehydrogenase (FAD) and ETF (electron-transferring flavoprotein) involved in fatty acid [47]
oxidation (FAD, Fe/S)
Type @ SdhC
5 TMS (His: 1-1-1-1-0) SdhAB (FAD, Fe/S), formation of membrane-bound succinate:menaquinone dehydrogenase complex [8,64]
(Type B SQO with 2 haem b [59]). Bacillus licheniformis, B. subtilis and other gram-positive bacteria as
well as non-fumarate-respiring sulfate reducers like Desulfovibrio vulgaris.
Type G No examples given
Type ® NapC® NapAB (Mo, Fe/S, haem c), transient electron transfer to periplasmic nitrate reductase. [7]
NrfHP NrfA (haem c), formation of membrane-bound cytochrome c nitrite reductase complex (NrfHA), [7,24,26,65]
W. succinogenes and Desulfovibrio vulgaris.
NirT? NirS (haems c and d,), periplasmic NO-producing nitrite reductase, Pseudomonas stutzeri. [66]
CymA® Various periplasmic oxidoreductases, Shewanella spp. [39]
TorC/DorC> TorA/DorA (Mo, Fe/S), periplasmic TMAO and/or DMSO reductase. [65,67]
NapH® NapG (Fe/S), menaquinol dehydrogenase in periplasmic Nap system of W. succinogenes. Ubiquinol [34-36]
dehydrogenase in E. coli.
NosH® NosG (Fe/S), possibly involved in electron transfer to periplasmic cytochrome ¢ N,O reductase, W. succinogenes. [35,38]
NrfD? NrfABC (Haem c, Fe/S), electron transport to periplasmic cytochrome c nitrite reductase NrfA, E. coli. [23,68]
MccD? MccAC (Haem c, Fe/S). Hypothetical electron transport to/from the octahaem cytochrome ¢ MccA, W. [69]
succinogenes.
PsrC¢ PsrAB (Mo, Fe/S), formation of membrane-bound polysulfide reductase complex, W. succinogenes, Thermus [28,29]
thermophilus. This type of enzyme may also catalyse thiosulfate and/or tetrathionate reduction.
Ttrcd TtrAB (Mo, Fe/S), formation of a membrane-bound quinol:tetrathionate reductase complex (producing [30]
thiosulfate), Salmonella spp.
DmsC
8 TMS DmsAB (Mo, Fe/S), formation of a membrane-bound menaquinol:dimethylsulfoxide reductase complex, E. coli. [70]
Type @ FrdC/FrdD
3 TMS each FrdAB (FAD, Fe/S), formation of membrane-bound menaquinol:fumarate reductase complex (Type D SQO [42,71]

lacking haem [59]), E. coli.
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Table 1 (continued)

Enzyme Quinone- or MP-reactive protein (subunit) Redox partner (cofactors), mode of interaction, representative organism(s) and enzyme

class and mode of membrane interaction® (complex) designation®

References

Type FrdC
5 TMS (His: 1-1-1-1-0)

FrdAB (FAD, FeS), formation of membrane-bound menaquinol:fumarate reductase complex (Type B SQO with [43-46]

2 haem b [59]). W. succinogenes and other e-proteobacteria, D. desulfuricans.

Type @ Narl
5 TMS (His: 0-29-0-0-27) NarGH (Mo, Fe/S), formation of membrane-bound nitrate reductase complex. E. coli. [9,11]
HdrE
5 TMS (His: 0-1-0-0-2g) HdrD (Fe/S), formation of membrane bound MPH,:heterodisulfide reductase complex, Methanosarcina spp. [15,72,73]
HmeC
5 TMS (His: 0-29-0-0-27) Hme complex (4 or 5 proteins) (Haem c, Fe/S); putative formation of a menaquinone-reactive membrane [17,18]

bound oxidoreductase complex. Archaeoglobus spp.

CytAB
7 and 8 TMS, respectively

Cytochrome bd ubiquinol oxidase. Note that the two haem b groups are bound by different polypeptides. E. coli. [74]

Enzymes (or enzyme complexes) are classified on the basis of their quinone- (or methanophenazine-) reactive subunits. Some of these proteins form stable membrane-bound
complexes in conjunction with appropriate redox partner proteins while others transfer electrons only during transient protein-protein interactions, thereby enabling the formation

of electron transfer networks.

¢ Common designations of homologous proteins are given in parentheses. Transmembrane protein segments (TMS) were predicted using the TMpred program. A code illustrates
the localisation of conserved histidine residues in TMS that are either known or likely axial haem b ligands, e.g. “His: 1-1-0-2;5" means that one such histidine is located in TMS 1, one
in TMS 2 and two (separated by 13 other residues) in TMS 4. Fe/S refers to the presence of one or more iron sulfur centres. Mo denotes the presence of a molybdenum cofactor (usually

Mo-bis-MGD).

b Member of the NapC/NrfH family. These proteins usually contain 4 haem c groups and are membrane-anchored via one N-terminal TMS. In addition, the TorC/DorC proteins

possess a C-terminally fused monohaem cytochrome ¢ domain.

€ NapH/NosH proteins contain 4 TMS, 2 conserved CX3CP motifs and are predicted to possess two [4Fe/4S] clusters of unknown function located at the N side of the membrane.

4 Member of the NrfD/PsrC family forming 8 or, in case of TtrC, 9 TMS.

observations and hypotheses on the mechanism of proton transloca-
tion drawn from biophysical experiments with cell sphaeroplasts
[10,11]. NarA consists of the structural components NarG, NarH and
Narl. The nitrate-reducing subunit NarG binds a molybdenum ion as
part of a Mo-bis-molybdopterin guanine dinucleotide cofactor (Mo-
bis-MGD) and an iron sulfur cluster. NarH binds four iron sulfur
clusters and mediates electron transfer to NarG. NarG and NarH
constitute the reductase module that receives electrons from Narl, an
integral membrane protein that binds two b-type haems and draws
electrons out of the menaquinol pool to NarH. NarG and NarH are
located at the N face of the cytoplasmic membrane. In Narl one of the
two haems is located at the P side of the protein and the other is at the
N side. Narl receives electrons from menaquinol at the P side and
electrons move down a ~9 nm wire of 8 redox centres and ultimately
reduce nitrate at the N side of the cytoplasmic membrane (Fig. 1C).
This structurally defined nanowire comprises two haems, five iron
sulfur clusters and the Mo-bis-MGD [11]. Since oxidation of mena-
quinol occurs at the periplasmic side of Narl, the protons are released
into the periplasm and the 2 electrons are moved from the haem on
the P side to the haem on the N side which has a more positive Eq’. The
transmembrane charge separation makes the Nar enzyme electro-
genic (or proton motive) in that a net of 2 positive charges is
translocated across the membrane during transfer of 2 electrons to
nitrate (H*/e"=1), thus transducing the free energy in the QH,/nitrate
couple (~420 mV) into a pmf via an electrogenic redox half loop
mechanism at a thermodynamic efficiency of about 50%. Readers
should be aware that this value is based on the standard midpoint
potentials of the redox couples involved in the overall reactions. The
true efficiencies rely on the working redox potentials of electron
donor and acceptor couples which in turn depend on the local steady
state concentrations of the reactants in the vicinity of the enzymes'
active sites

The NarGHI redox loop serves to oxidise menaquinol to menaqui-
none. In order to sustain turnover of NarGHI, it must be coupled to a
donor:menaquinone dehydrogenase to replenish menaquinol. E. coli
produces formate under anaerobic conditions when organic carbon
substrates are catabolised via pyruvate and the enzyme pyruvate
formate lyase. When nitrate reduction by NarA is coupled to electron
input from formate via the nitrate-inducible formate dehydrogenase
(Fdh-N), two redox half loops are brought together and the FdhN-
NarA respiratory chain of E. coli emerges as paradigm for a full proton

motive redox loop (Fig. 1C). In Fdh-N, by contrast to NarGHI, the
catalytic site is at the P side of the membrane. However, like NarA, the
electrons generated pass down a ~9 nm wire of redox centres that in
this case connect the Mo-bis-MGD cofactor of Fdh-N, located in the
periplasm, to a menaquinone reductase site at the N face of the
cytoplasmic membrane. Like in NarGHI, the wire comprises five iron
sulfur clusters and two b-type haems. A large potential drop
(~340 mV) from formate to menaquinone allows efficient electron
transfer against the pmf of ~200 mV and the whole process serves,
like NarA, to effectively translocate 2 positive charges across the
membrane for every two electrons extracted from formate (H"/e”=1).
Together then, the electron-carrying arms of Fdh-N and NarA form a
proton motive redox loop that spans an electron-transfer distance of
some 15 nm, has a AEy’ of 840 mV (=420 mV to +420 mV) and a
coupling stoichiometry of 4H*/2e™(~50% thermodynamic efficiency).
When the whole electron transfer ladder from the Fdh-N Mo-bis-MGD
via the quinone pool to the Nar Mo-bis-MGD is considered, it should
be noted that the intermediary haem and iron sulfur cluster electron
carriers are one-electron transfer centres. However, as formate
oxidation, quinone reduction, quinol oxidation and nitrate reduction
are two-electron reactions, the Mo-bis-MGD cofactors and Q/QH,
binding sites at either end of the two intramolecular nanowires are
crucial for coupling the one- and two-electron oxidoreductions.
Generally, if two redox cofactors are positioned within ~1.4 nm or
less of each other, rapid electron transfer will take place provided
there is a sufficiently strong overall thermodynamic driving force [12].
In the case of the formate/menaquinol and menaquinol/nitrate redox
couples there is such a driving force and thus electrons will move
rapidly through the wire being ‘pushed’ by formate and ‘pulled’ by
nitrate. The involved ‘wire-like’ arrangement of the electron transfer-
ring cofactors can be seen in a number of different kinds of respiratory
enzymes, for example in the membrane-bound Ni/Fe-hydrogenase
(Ha:quinone dehydrogenase) which is predicted to operate a redox
half loop mechanism similar to Fdh-N (type D in Table 1). Recently, a
novel group of archaeal and bacterial enzymes emerged where a
NarG-like protein was found to contain a typical twin-arginine signal
peptide suggesting an outside-orientation of the catalytic subunit
[13,14]. The bioenergetic significance of such enzymes is not known as
the corresponding genes are not accompanied by a narl-type gene.
Another, but less well known, example of mechanism A is the H,:
heterodisulfide oxidoreductase system used in mixed disulfide
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respiration of methanogenic Methanosarcina species [15]. This system
consists of two methanophenazine-reactive enzyme complexes,
namely F4y0-nonreducing Ni/Fe-hydrogenase (type () and dihydro-
methanophenazine-reactive heterodisulfide reductase (type ). Both
enzymes contain membrane anchor subunits (VhoC and HdrE) with 5
transmembrane segments (TMS) each that are likely to bind two haem
b groups to ensure transmembrane electron delivery (Table 1). Only
three histidines are conserved in HdrE, but there is also a conserved
methionine in the second TMS, hence it is conceivable that HdrE binds
two haems (one each with His-His and His-Met ligation) stacked

across the membrane. This would make HdrE operationally equivalent
to Narl but conducting electrons from a dihydro-methanophenazine
oxidation site located at the P side to a heterodisulfide reductase site
located at the N side of the membrane. Heterodisulfide reduction by
H, has been shown to be coupled with the translocation of 3-4 H*/2e~
in Methanosarcina mazei G61 which is in accordance with mechanism
A [16]. Both electron carrying arms of the redox loop have been
investigated separately using inverted cell vesicles and 2-hydroxy-
phenazine/dihydro-2-hydroxyphenazine as redox mediator demon-
strating that both reactions are electrogenic [ 16]. However, the precise
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localisation and architecture of the MP/MPH,-reactive sites remain to
be established. A predicted di-haem cytochrome b (HmeC, type © in
Table 1) which is similar to HdrE was proposed as the membrane
anchor of a menaquinol:acceptor dehydrogenase Hme complex in the
sulfate-reducing archaea Archaeoglobus fulgidus and Archaeoglobus
profundus that might play a role in disulfide reduction or a related
process [17,18]. The precise haem b content of HmeC was not reported
but four conserved histidine residues are present (Table 1). Similar to
HmeC is DsrM, a potential di-haem cytochrome b found in Desulfovi-
brio species, Chlorobium tepidum, Allochromatium vinosum and Desul-
fitobacterium hafniense (occasionally the corresponding gene is part of
a gene cluster encoding sulfite reductase) [19]. In fact, a variety of such
proteins from sulfate reducers (named DsrM, TmcC, HmcE, HmcC and
QmoC) have been characterised recently [20-22]. The proteins all
represent putative subunits of membrane-bound and possibly
menaquinone/menaquinol-reactive complexes whose detailed func-
tion in substrate conversion and bioenergetics is yet unresolved.
Depending on their substrate (possibly hydrogenase-reduced cyto-
chrome c; or adenosine-5’-phosphosulfate/sulfite), such complexes
have to be classified as either type (D or (©.

3.2. Mechanism B

This mode of operation is arguably the most common mechanism
of those presented in this article and couples the electrogenic donor:
quinone dehydrogenase of type (D to an electroneutral reaction
involving a quinol:acceptor reductase system of type ® (Fig. 3B and
Table 1). Type ® systems contain some of the most widespread
bacterial quinol dehydrogenase modules, namely those belonging to
the NapC/NrfH, NapH and NrfD/PsrC families [7]. Although the free
energy of the quinol:acceptor couple (which in some cases is high
enough to drive proton translocation) is not transduced in pmf
formation, enzymes of type ® play an essential role in redox balancing
by supplying quinone for the electrogenic type O enzyme.

A prominent example of mechanism B is the formate- (or Hy-)
dependent periplasmic nitrate ammonification pathway of enteric
bacteria and other species like Desulfovibrio desulfuricans and W.
succinogenes that couple quinol oxidation to nitrate reduction, thus
producing nitrite which is further reduced to ammonium (note that
some species contain only one of these systems, e.g. many nitrate-
denitrifying bacteria or sulfate reducers that cannot convert nitrate
but reduce nitrite to ammonium) [23]. The quinol pool is oxidised by
the Nap and Nrf systems in order to catalyse electroneutral nitrate
reduction to nitrite and nitrite reduction to ammonium, respectively.
Consequently, the whole respiratory nitrate ammonification system
relies on pmf generation at the level of electron input into the Q pool
(for example via a type @ enzyme), rather than at the level of
electron output. Hence, the role of the Nap and Nrf systems is to
serve turnover of the QH,-pool to ensure a continued supply of
oxidised quinone for the quinone-reducing electron input compo-
nents. Experimental support for mechanism B comes from experi-
ments performed with W. succinogenes demonstrating electrogenic
electron transport from formate to nitrite in liposomes containing
formate dehydrogenase (FAdhABC, type (D), menaquinone and the
cytochrome c nitrite reductase complex (NrfHA, type ®) [24]. The
NrfH protein was shown to be required for menaquinol oxidation
[24,25] and this view was supported by the crystal structure of the D.
vulgaris NrfHA complex [26]. In contrast to the functionally similar
NapC proteins (Table 1), NrfH forms a stable complex with its redox
partner, the nitrite-reducing NrfA. In this case, complex formation is
apparently facilitated by the fact that a NrfA lysine residue acts as an
axial iron ligand of one of the NrfH haem c groups [26]. Interestingly,
NrfH is replaced by the NrfBCD system in enteric bacteria like E. coli
[23]. Here, the membrane-bound NrfD presumably works as a
menaquinol dehydrogenase that initiates electron transport via the
Fe/S protein NrfC to the periplasmic pentahaem cytochrome ¢ NrfB

[7,27]. NrfD is the prototype of the NrfD/PsrC family that also
comprises the membrane anchors of polysulfide reductase (PsrC, e.g.
from W. succinogenes or Thermus thermophilus) and tetrathionate
reductase (TtrC from Salmonella enterica) [28-30]. Such proteins
form eight or nine TMS and are thought to catalyse quinol oxidation.
The crystal structure of the T. thermophilus PstABC complex recently
demonstrated that the quinol binding site is situated at the P side of
the membrane and in close distance to an iron sulfur centre of PsrB
[29]. Proteoliposomes containing the PsrABC complex and either of
the type @ enzyme complexes HydABC or FdhABC isolated from
W. succinogenes membranes were found to catalyse polysulfide
respiration [28]. This system, however, was dependent on the
presence of methyl-menaquinone-6 (MMK-6) which is likely to be
bound by PsrC. It has to be kept in mind here that the midpoint
potential of the polysulfide/sulfide redox pair is more negative than
that of MK/MKH,. Consequently, the free energy change for
polysulfide reduction by either H, or formate is not high enough to
drive a H'/e™ of 1. In fact, W. succinogenes polysulfide respiration was
shown to be dependent on supercomplex formation between
hydrogenase (or formate dehydrogenase) and polysulfide reductase
and to operate at an estimated H'/e” of 0.5 [31]. It is conceivable that
the bound MMK-6 is energetically more favourable than MK-6 to
mediate electron transport between the enzyme complexes. In
contrast to polysulfide respiration, MK-6 proved sufficient for the
pmf-generating reconstitution of other respiratory chains from W.
succinogenes in liposomes, e.g. those using nitrite and fumarate as
electron acceptor, i.e. substrates with a more positive midpoint
potential than that of polysulfide [24,32].

Another facet of periplasmic nitrate reduction comes from the fact
that the W. succinogenes Nap system is independent of a NapC
homologue, as opposed to other bacteria like E. coli [33]. It was shown
recently that W. succinogenes relies on the NapH and NapG proteins to
catalyse menaquinol oxidation and electron transport to NapA (via the
essential periplasmic di-haem cytochrome c¢ NapB) [34,35]. In
contrast, E. coli apparently uses a NapGH complex to catalyse
ubiquinol oxidation in order to initiate electron transport via NapC
and NapB to NapA [36]. NapH forms 4 TMS across the membrane and
is very likely to contain a quinol-binding site from which electrons are
transferred to the periplasmic Fe/S protein NapG. Purification of a
NapH-like protein has not yet been reported and no structural
information is available. The two four-cysteine clusters and two Cys-
X3-Cys-Pro signatures (all conserved and predicted to be located on
the N side of the membrane) have been shown to be functionally
essential in W. succinogenes NapH [35]. NapH and NapG are encoded
in many, but not all, nap gene clusters and NapH-like proteins (e.g.
NosH, MauN, RdxA, CcoG/FixG/RdxB) are also encoded in various
other genetic contexts [35,37,38]. Although unlikely, it cannot be
excluded that NapH-catalysed redox reactions are coupled to proton
pumping.

Interestingly, many of the quinone-reactive type ® proteins
discussed above do not seem to form stable membrane-bound
enzyme complexes with their redox partners. In principle, this allows
branched electron flow from the quinone pool to several distinct
terminal reductases involved in redox balancing. Such an electron
distributing role has been proposed for the NapC/NrfH family member
CymA from Shewanella species as a cymA mutant was found to be
defective in various modes of anaerobic respiration [39,40]. Similarly,
the NrfH protein from Campylobacter jejuni was suggested to deliver
electrons to both the Nrf and Nap systems [41].

3.3. Mechanism C

In many bacteria formate can serve as the reductant for fumarate
mediated by the formate dehydrogenase complex (Fdh-N of type @)
and a quinol:fumarate reductase of type @ (Fig 3C; Table 1). In this
coupling mechanism the proton motive step rests with the formate
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dehydrogenase which couples quinone reduction to formate oxidation
in an electrogenic manner. The fumarate reductase arm of this couple
is not electrogenic but serves to recycle the quinone pool so the
turnover of the formate dehydrogenase is sustained. This is in line
with the fact that the E. coli menaquinol:fumarate reductase does not
contain haem b [42]. In many ways the function of fumarate reductase
is similar to that of the periplasmic nitrate and nitrite reductases
described in Mechanism B. Both are non-pmf generating redox cycling
systems, but the key difference is the site of quinol oxidation being on
the N rather than P side of the membrane in mechanism C.

3.4. Mechanism D

This mechanism is similar to mechanism C except that the quinol
oxidation site of the type ® quinol:acceptor reductase is located at the
P side of the membrane (Fig. 3D). Therefore, the latter enzyme is a type
@ enzyme working in reverse which is expected to catalyse
electrogenic quinol oxidation coupled to substrate reduction. One
such enzyme is the menaquinol:fumarate reductase from e-proteo-
bacteria like W. succinogenes and C. jejuni (Table 1). Menaquinol
oxidation by fumarate is not exergonic enough to drive pmf generation
at a proton/electron ratio of 1. This was experimentally supported by
experiments using the reconstituted electron transport chain of
fumarate respiration with either formate or H, from W. succinogenes
that proved that fumarate-dependent menaquinol oxidation is
electroneutral [32]. The crystal structure of the corresponding
menaquinol:fumarate reductase (FrdABC complex), however, clearly
showed that the menaquinol oxidation site is at the P side of the
membrane [43]. In order to make the FrdABC complex work in the
direction of fumarate respiration, a pmf-consuming (uncoupling)
mechanism has apparently evolved that couples the redox reaction to
proton translocation from the P to the N side. This mechanism, the so-
called ‘E-pathway’ [44], was confirmed experimentally and it has been
shown to involve the conserved residue Glu-180 of TMS 5 in FrdC (W.
succinogenes numbering) and the ring C propionate side chain of the
distal haem b group [45,46]. The crucial glutamate residue is absent in
the di-haem cytochrome b membrane anchor subunits of type @
succinate:menaquinone dehydrogenases.

3.5. Mechanism E

In this case an electroneutral type @ donor:quinone dehydrogen-
ase is coupled to an electrogenic quinol:acceptor reductase of type 9
(Fig. 3E). Examples where conceptually such a coupling could take
place would be the periplasmic oxidation of sugars by PQQ-dependent
glucose/aldose sugar dehydrogenases (Table 1). Membrane-bound
glucose dehydrogenases, for example Gdh from E. coli, are quinone-
dependent enzymes that oxidise glucose to gluconolactone using
ubiquinone (UQ) as electron acceptor. The enzyme does not have any
integral membrane redox centres and so the UQ is reduced at the
periplasmic face of the membrane rendering Gdh an electroneutral
type @ donor:quinone dehydrogenase. At low oxygen tensions in the
presence of nitrate an outlet for recycling the UQ-pool is NarGHI, the
prototype electrogenic quinol:acceptor reductase of type (©. In
principal, the type @ sulfide:quinone dehydrogenase could also be
coupled to a type @ quinol:acceptor reductase, although this has not
yet been shown experimentally.

3.6. Mechanism F

In this case an electroneutral type 3 donor:quinone dehydrogen-
ase is coupled to an electrogenic quinol:acceptor reductase of type ©
(Fig. 3F). This pairing is quite common in anaerobic nitrate-dependent
metabolism as substrates that feed the citric acid cycle would pass
electrons to nitrate reductase (type @) via succinate dehydrogenase
(type ®) in, for example, P. denitrificans or E. coli (Table 1). Since the

structures of the succinate:quinone oxidoreductase and membrane-
bound nitrate reductase of E. coli have been solved, a full structural
resolution of a mechanism F coupling is available. Organic electron
donors that feed into metabolism via the (3-oxidation of fatty acids
also illustrate an example of an electroneutral type 3 donor:quinone
dehydrogenase called electron transfer flavoprotein (ETF) quinone
oxidoreductase that couples fatty acid oxidation to the respiratory
chain. A structure of this enzyme from porcine mitochondria has
recently emerged that has many bacterial homologues [47]. Also, in
many bacteria, in addition to the proton-pumping NADH dehydro-
genase (complex I), a second type of NADH dehydrogenase (Ndh-2;
Table 1) is assembled that is non-proton pumping and is thus another
widespread example of an electroneutral type 3 donor:quinone
dehydrogenase [48].

4. Conclusions and outlook

Although the structures of many oxidoreductases that underpin
microbial respiratory diversity are known, for example many of the N-
cycling oxidoreductases, the electron transport chains that mediate
electron transfer between the quinone/quinol pool to or from these
termini are less well resolved. In some cases these electron input or
egress systems are tightly associated with the terminal oxidoreduc-
tase and here studies are frequently more advanced (see Mechanism A
in section 3). However, in many cases the quinone/quinol-reactive
modules do not tightly associate with the terminal oxidoreductase
and here purification and characterisation is often more difficult
owing to lack of convenient assays. These systems represent
challenges for the future.

A feature of many of the stable complexes is the presence of di-
haem cytochrome b membrane anchors that are critical to trans-
membrane charge separation in a range of biochemically unrelated
systems. This conservation of the mechanism for transmembrane
electron transfer also appears to be associated with a preference for
electron transfer to iron sulfur clusters that can be either [2Fe/2S],
[3Fe/4S] or [4Fe/4S]. The formation of a tight complex prevents the
possibility of promiscuous electron transfer. Interestingly, enzymes of
types @, @ and © (where H*/e” is either +1 or —1) usually form
stable membrane-bound complexes whereas many of the proteins
involved in electroneutrally operating enzyme systems (H*/e"=0)
apparently interact only transiently, a fact that might accelerate
electron transfer in redox balancing reactions. When a quinone/
quinol-reactive module is not tightly associated with a terminal
oxidoreductase, promiscuity becomes a possibility if multiple redox
partners are available. This is clearly apparent in many bacterial
systems and a prominent example is the tetrahaem c-type cyto-
chrome CymA that has been shown to be involved in electron
transfer to a wide range of systems (see above). CymA belongs to the
NapC/NrfH family of multihaem c-type cytochromes that is wide-
spread amongst bacterial species and appears to represent a
frequently used evolutionary solution for a quinol:cytochrome c
reductase. However, apart from the cytochrome bc; complex, no
quinol:cytochrome c reductase has yet emerged that is intrinsically
energy transducing. This observation is in marked contrast to the
many different types of quinol:cytochrome b dehydrogenases
presented in this article. Another observation that emerges from
consideration of the quinol-dependent electron transfer systems
explored here is the flexibility for coupling pmf generation to donor
oxidation, acceptor reduction or both. This can serve to optimise
metabolism according to the nature of the donors and acceptors
available. It also provides for metabolic options for the organisms
that are not only living with two substrates in nature, but employ
electron transfer networks that jointly contribute to pmf generation.

Many exergonic reactions have been recognised in recent years to
sustain microbial growth, predominantly in anaerobic environments.
Examples are anaerobic ammonium oxidation using nitrite as electron
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acceptor (the anammox process) or nitrite-dependent anaerobic
oxidation of methane [49,50]. In these cases, it is likely that metabolic
principles will be initially hypothesised on the basis of genome
sequences. We hope that the classification of enzymes and pmjf-
generating mechanisms discussed here will be useful in defining and
reconstructing electron transport networks from genetic data where
biochemical characterisation is lacking. Undoubtedly, many more as
yet unknown enzymes fitting into the framework presented here will
be discovered in the future. All of these will rely on general
thermodynamic principles and most of them will depend on known
electron transport mediators and cofactors. We hope that the pmf-
generating redox loop mechanisms presented here will be used as a
guideline for the future characterisation of structural, enzymatic and
bioenergetic aspects of quinone/quinol-reactive proteins.
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