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Abstract

While the reductive pentose phosphate cycle is responsible for the fixation of most of the carbon in the biosphere, it

has several natural substitutes. In fact, due to the characterization of three new carbon fixation pathways in the last

decade, the diversity of known metabolic solutions for autotrophic growth has doubled. In this review, the different

pathways are analysed and compared according to various criteria, trying to connect each of the different metabolic

alternatives to suitable environments or metabolic goals. The different roles of carbon fixation are discussed; in

addition to sustaining autotrophic growth it can also be used for energy conservation and as an electron sink for the

recycling of reduced electron carriers. Our main focus in this review is on thermodynamic and kinetic aspects,

including thermodynamically challenging reactions, the ATP requirement of each pathway, energetic constraints on
carbon fixation, and factors that are expected to limit the rate of the pathways. Finally, possible metabolic structures

of yet unknown carbon fixation pathways are suggested and discussed.

Key words: ATP requirement, Calvin cycle, carbon fixation, electron sink, kinetics, metabolic pathways, oxygen sensitivity,

reduction potential, reductive metabolism, thermodynamics.

Introduction

Carbon fixation is one of the dominant biochemical pro-

cesses in the biosphere, supplying the carbon building
blocks for all living organisms. It became clear decades ago

that, apart from the ubiquitous reductive pentose phosphate

cycle (Bassham et al., 1950), prokaryotic alternatives for

carbon fixation also exist (Evans et al., 1966; Fuchs, 1985;

Ljungdahl, 1986). In recent years, these alternatives have

started to accumulate at a staggering pace (Herter et al.,

2002b; Berg et al., 2007; Huber et al., 2008) and have

already received some excellent reviews (Berg et al., 2010a;
Sato and Atomi, 2010; Berg, 2011; Fuchs, 2011; Hugler and

Sievert, 2011). In this review, the carbon fixation pathways

are compared according to various criteria and the meta-

bolic aims they serve are analyzed. Specifically, in addition

to sustaining autotrophic growth, they can be used for

energy conservation and for the recycling of reduced

electron carriers.

The structure and enzymatic components of each of the

carbon fixation pathways, apart from the reductive pentose
phosphate cycle that has been reviewed extensively (Stitt

and Schulze, 1994; Poolman et al., 2000; Raines, 2003, 2006;

Peterhansel et al., 2008), are given in Figs 1 and 2 and

described in Table 1 and also in Supplementary Tables S1

and S2 at JXB online.

The carbon fixation pathways can be divided into two

general categories. One category contains pathways (e.g. the

reductive acetyl-CoA pathway) that directly utilize reduced
C1 compounds (formic acid, formaldehyde, etc.) as free

metabolites or as moieties attached to specific C1 carrier

compounds (THF, MPT etc.) (Fig. 2). The other category

contains pathways (e.g. the reductive TCA cycle) in

which CO2 is assimilated into the carbon backbone of other

metabolites, such that no reduced C1 compounds (free or

bound to specific carriers) are part of the pathway (Fig. 1).
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Fig. 1. The acetyl-CoA-succinyl-CoA carbon fixation cycles. Every circle corresponds to a substituted carbon atom. A colour notation

scheme has been used to display the different functional groups composing the metabolites, which also corresponds to the oxidation

states of the carbons: red indicates a carboxyl, purple corresponds to a carbonyl, green to a hydroxylcarbon, and black to

a hydrocarbon. Fd corresponds to ferredoxin and UQ to ubiquinone. ‘AH2’ corresponds to a reduced electron donor, while ‘A’

represents an oxidized electron donor. Basic properties of the enzymes are given in Supplementary Table S1 at JXB online. Changes in

Gibbs energy, DGr’, at pH 7, ionic strength of 0.1 M, and reactant concentrations of 1 mM are shown in green and were calculated using

eQuilibrator (http://equilibrator.weizmann.ac.il; Flamholz et al., 2011) and available experimental Gibbs energies of formation, DGf’, from

(Alberty, 2003). DGr’ values given in italics correspond to reactions in which DGff’ of at least one reactant was not available and hence all

DGf’ values were calculated using a group contribution method (Jankowski et al., 2008). Enzymes: (A1) 2-ketoglutarate synthase; (A2)

isocitrate dehydrogenase; (A3) aconitase; (A4) ATP citrate lyase; (B1) pyruvate synthase; (B2) pyruvate water dikinase; (B3) PEP

carboxylase; (B4) malate dehydrogenase; (B5) fumarase; (B6) fumarate reductase; (B7) succinyl-CoA synthetase; (C1) succinyl-CoA

reductase; (C2) 4-hydroxybutyrate dehydrogenase; (C3) 4-hydroxybutyryl-CoA synthetase; (C4) 4-hydroxybutyryl-CoA dehydratase; (C5)

enoyl-CoA hydratase (crotonase); (C6) 3-hydroxybutyryl-CoA dehydrogenase; (C7) acetyl-CoA C-acyltransferase; (D1) acetyl-CoA

carboxylase; (D2) 3-oxopropionate dehydrogenase (malonyl-CoA reductase); (D3) 3-hydroxypropionate dehydrogenase; (D4)
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3-hydroxypropionyl-CoA synthetase; (D5) 3-hydroxypropionyl-CoA dehydratase; (D6) acrylyl-CoA reductase; (D7) propionyl-CoA

carboxylase; (D8) methylmalonyl-CoA epimerase; (D9) methylmalonyl-CoA mutase; (E1) methylmalyl-CoA lyase; (E2) methylmalyl-CoA

dehydratase; (E3) mesaconyl-CoA C1-C4 CoA transferase; (E4) mesaconyl-C4-CoA hydratase; (E5) citramalyl-CoA lyase; (F1) succinyl-

CoA:malate CoA transferase; (F2) succinate dehydrogenase; (F3) fumarase, and (F4) malyl-CoA lyase.

Fig. 2. The C1 carbon fixation pathways. Colouring and symbols are as in Fig. 1. THF corresponds to tetrahydrofolate, MPT to

methanopterin, MFR to methanofuran, and F420 to reduced deazaflavin factor 420. The glycine cleavage system is composed of the

enzymes glycine dehydrogenase, aminomethyltransferase, and dehydrolipoyl dehydrogenase. ‘LP’ corresponds to lipoyl-protein

(H-protein of the glycine cleavage system). Basic properties of the enzymes are given in Supplementary Table S2 at JXB online. Changes

in Gibbs energy, DGr’, at pH 7, ionic strength of 0.1 M, and reactant concentrations of 1 mM are shown in green and were calculated

using eQuilibrator (http://equilibrator.weizmann.ac.il; Flamholz et al., 2011) and available experimental Gibbs energies of formation, DGf’,

from Alberty (2003). Changes in Gibbs energy for reactions involving THF, MFR, and MPT were taken from Maden (2000). Change in

Gibbs energy for the glycine synthase system is taken from Liegel (1985).
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The C1 carbon fixation pathways are sometimes called

‘linear’ while the others are called ‘cyclic’. However, this

distinction can be problematic since the C1 carriers

participating in the C1 carbon fixation pathways undergo

a cyclic recycling similar to the recycling of the metabolites

participating in the ‘cyclic’ carbon fixation pathways.

Apart from the reductive pentose phosphate cycle, all

other non-C1 carbon fixation pathways share a common
structural feature, as shown in Fig. 1. These cycles employ

two conserved metabolites: acetyl-CoA and succinyl-CoA.

Each cycle is composed of a ‘downward arm’, carboxylating

acetyl-CoA to succinyl-CoA and an ‘upward arm’, regener-

ating acetyl-CoA and providing the cell with a fixed organic

compound. Interestingly, each of the cycles shares at least

one arm with another cycle, making the representation of

the entire enzymatic scheme highly compact (Fig. 1).
While the four acetyl-CoA-succinyl-CoA pathways show

a remarkable structural similarity, their phylogenetic distri-

bution is very different (Table 1). The reductive TCA cycle

(Buchanan and Arnon, 1990) and the 3-hydroxypropionate

bicycle (Berg et al., 2010a; Berg, 2011; Fuchs, 2011)

are known to operate solely in bacterial lineages while the

dicarboxylate-4-hydroxybutyrate cycle (Huber et al., 2008)

and the 3-hydroxypropionate-4-hydroxybutyrate cycle (Berg
et al., 2007; Berg et al., 2010b; Walker et al., 2010; Pratscher

et al., 2011) are used only by archaea (Table 1). Also, while

the 3-hydroxypropionate bicycle and the 3-hydroxypropio-

nate-4-hydroxybutyrate cycle overlap considerably, they do

not share a common origin but rather have evolved in-

dependently (Berg et al., 2010a; Berg, 2011; Fuchs, 2011).

In the C1 carbon fixation pathways, CO2 molecules are

reduced and attached to specific C1 carriers. Tetrahydrofo-
late (THF) is the primary carrier of reduced C1 fragments

in most cells, serving an essential metabolic role in the

biosynthesis of many central metabolites (Maden, 2000).

The reductive acetyl-CoA pathway, the most widely spread

C1 carbon fixation pathway (Table 1), utilizes this ubiqui-

tous C1 carrier to enable CO2 reduction and metabolism, as

shown in Fig. 2, pathway 1 (Ljungdahl, 1986; Drake et al.,

2006, 2008; Ragsdale, 2008; Ragsdale and Pierce, 2008).
The pathway uses the conserved CO-dehydrogenase-acetyl-

CoA synthase complex to react the reduced C1 moiety with

CoA and with another reduced CO2 molecule (reduced

to carbon monoxide) to generate acetyl-CoA (overall re-

action: 5-methyl-THF+CO2+CoA+2 ferredoxin(red)/ace-

tyl-CoA+THF+2 ferredoxin(ox), Fig. 2). Methanogenic

archaea use a distinct version of the reductive acetyl-CoA

pathway, as shown in Fig. 2, pathway 2. Instead of
THF and NAD(P)H, these archaea use unique C1 and

redox carriers, such as methanopterin, methanofuran,

and reduced deazaflavin factor 420 (F420) (Keltjens et al.,

1983; Escalante-Semerena et al., 1984a, b; DiMarco et al.,

1990).

The glycine synthase pathway, shown in Fig. 2, pathways 3

and 4, is not used for autotrophic growth. Instead, CO2

fixation through this pathway serves only as an electron sink
to recycle reduced electron carriers that are generated during

the fermentation of purines and amino acids (Waber and

Wood, 1979; Durre and Andreesen, 1982; Durre et al., 1983;

Schiefer-Ullrich et al., 1984; Fuchs, 1985; Schneeberger et al.,

1999; Fonknechten et al., 2010). The pathway recycles the

electron carriers by reducing two CO2 molecules to glycine,

which is then converted to acetate and secreted from the cell.

The glycine cleavage system, the core of the glycine synthase

pathway, is a multi-protein complex that occurs throughout

the tree of life and catalyses the reversible synthesis of glycine
(overall reaction: 5,10-methylene-THF+CO2+NH3+-

NADH/glycine+THF+NAD+; Fig. 2) (Kikuchi, 1973;

Liegel, 1985; Pasternack et al., 1992; Zhang and Wiskich,

1995). Glycine produced via the glycine cleavage system is

converted to acetyl-phosphate via the selenoenzyme glycine

reductase (Fig. 2, pathway 3) (Andreesen, 2004), or, when

selenium is absent, to serine and pyruvate (Fig. 2, pathway 4)

(Vogels and Van der Drift, 1976; Waber and Wood, 1979;
Fuchs, 1985).

The last C1 carbon fixation pathway discussed here is an

elusive pathway that was studied by a single research group.

The glyoxylate synthetase pathway, shown in Fig. 2,

pathway 5, was suggested to operate in the chloroplast of

greening potato tubers and to be responsible for the

reduction of three CO2 molecules to pyruvate, which is then

metabolized to the toxic alkaloid solanidine (Ramaswamy
et al., 1976; Ramaswamy and Sangeeta, 1983; Ramaswamy

and Nair, 1984; Janave et al., 1993, 1999). However, the

gene encoding for glyoxylate synthetase, the central enzyme

of the pathway that condenses two formate molecules into

one glyoxylate molecule, is unknown. Since the enzyme has

not been assigned to a gene and the reaction it catalyses was

never found to operate in any other organism, the

significance of this pathway remains unclear.

The carbon fixation pathways serve multiple metabolic
goals

One major functional difference between the C1 carbon
fixation pathways and the others is that the former path-

ways are used for numerous metabolic goals, including

energy conservation and the recycling of reduced electron

carriers. By contrast, the non-C1 carbon fixation pathways

are utilized solely for autotrophic growth. The only

exception is the reductive pentose phosphate cycle that may

serve, in some cases, solely as an electron sink for the

recycling of electron carriers (Wang et al., 1993; Tichi and
Tabita, 2000; Joshi et al., 2009).

A good example for multi-functionality of a carbon

fixation pathway is the reductive acetyl-CoA pathway

(Fig. 2, pathway 1) which is employed both heterotrophi-

cally and autotrophically (Drake et al., 2006, 2008;

Ragsdale, 2008; Ragsdale and Pierce, 2008). The acetogenic

bacterium Moorella thermoacetica, for example, can use this

pathway to convert glucose into three molecules of acetate
(Fontaine et al., 1942; Collins et al., 1994): two acetate

molecules are formed directly from the glycolytic fermenta-

tion of glucose while the third is produced by the reductive

acetyl-CoA pathway, which recycles the reducing equiva-

lents produced in the fermentation process. Notably, this
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metabolic alternative enables the production of four ATP
molecules instead of the two normally produced in glycol-

ysis. Usually, in order to recycle the reduced electron

carriers, acetyl-CoA molecules formed in glycolysis are

reduced to acetaldehyde and then to ethanol. However, in

heterotrophic organisms that use the reductive acetyl-CoA

pathway, the reduced electron carriers are recycled through

carbon fixation, freeing acetyl-CoA molecules to be

converted into acetyl-phosphate. Acetyl-phosphate then
transfers its phosphate groups to ADP, forming acetate

and ATP and thereby increasing the ATP yield by two extra

molecules per glucose (Drake, 1994). This route represents
the highest known ATP yield in fermentation (Drake et al.,

2006).

The reductive acetyl-CoA pathway is also the only

autotrophic carbon fixation pathway that can be used for

energy conservation. The product of the pathway, acetyl-

CoA, can be converted to acetate via acetyl-phosphate and

provide an ATP that recoups the ATP-dependent linkage of

formate and tetrahydrofolate (Fig. 2). In addition, the
electron transport in one or more of the pathway’s oxidation–

reduction reactions (probably methylenetetrahydrofolate

Table 1. Properties of the carbon fixation pathways

Pathway Distribution Resources need for the synthesis of pyruvate

Electron donors Electron
acceptors

ATP
requirementa

Carbon
species

Ferredoxin
pairs

NAD(P)H Others CO2 HCO3

Reductive pentose phosphate

cycle

The Plantae and Protista kingdoms,

cyanobacteria and members of the

a, b and c subdivisions of

proteobacteria (photosynthetic &

chemolithotrophic)

– 5 – – 7 3 –

Reductive TCA cycle Green sulphur bacteria (Chlorobi),

members of the thermophilic

bacterial phylum Aquificae, members

of the Nitrospira phylum and

members of the a, d, and e

subdivisions of proteobacteria

(photosynthetic & chemolithotrophic)

2 3 – – 2 3 –

Dicarboxylate-4-hydroxybutyrate

Cycle

Anaerobic or microaerobic

thermophilic archaea orders of

Desulfurococcales and

Thermoproteales (chemolithotrophic)

2 or 3 2 or 3 1 1 NAD+ 5 2 1

3-Hydroxypropionate-4-

hydroxybutyrate cycle

Aerobic thermophilic archaea of the

order Sulfolobales and possibly the

mesophilicThaumarchaeota phylum

(chemolithotrophic)

– 7 – 1 Ubiquione + 1 NAD+ 9 – 3

3-Hydroxypropionate bicycle The green non-sulphur bacterium

Chloroflexus aurantiacus and related

Chloroflexi (photosynthetic)

– 6 – 1 Ubiquione 7 – 3

Reductive acetyl-CoA pathway

(acetogens)

Mostly members of the bacterial

class of Clostridia but also other

members of the Firmicutes and

Planctomycetes phylums

(chemolithotrophic)

2 3 – – <1 3 –

Reductive acetyl-CoA pathway

(methanogens)

Methnogens and other archaea of

the Euryarchaeota phylum

(chemolithotrophic)

3 – 2 F420H2 – <1 3 –

Glycine synthase pathway (glycine

reductase)

Members of the bacterial class of

Clostridia (heterotrophic)

1 4 – – 1 3 –

Glycine synthase pathway (serine

hydroxymethytransferase)

Members of the bacterial class of

Clostridia (heterotrophic)

– 5 – – 2 3 –

Glyoxylate synthetase pathway The chloroplast of greening potato

tubers (photosynthetic)

– 5 – – 1 3 –

a Assuming pyrophosphate is hydrolysed into two phosphates.
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reductase) is coupled to sodium translocation across the

membrane, which supports the formation of ATP via

ATPases (Imkamp and Muller, 2007; Ragsdale and Pierce,

2008; Ljungdahl, 2009; Biegel and Muller, 2010; Fuchs, 2011;

Martin, 2011). Consequently, the product of the pathway,

acetyl-CoA, can either be directed to acetate and energy

conservation or to pyruvate and biomass production (Fig. 2).

Notably, the reductive acetyl-CoA pathway and the
glycine synthase pathway are quite similar in their general

reaction sequence: (1) CO2 is reduced and attached to a C1

carrier (THF or MPT); (2) the attached C1 moiety is further

reduced; (3) a complex (CO-dehydrogenase-acetyl-CoA

synthase or glycine synthase) reacts the reduced C1 moiety

with another CO2 molecule to give an energized C2

compound (acetyl-CoA or glycine); (4) the energized C2

compound is converted into acetyl-phosphate; (5a) the
acetyl phosphate is converted to acetate while conserving

energy in the form of ATP, thereby recouping the ATP

invested at the beginning of the pathway; (5b) alternatively,

biomass can be produced by converting the energized C2

compound into pyruvate.

Despite this apparent similarity, the usage of the re-

ductive acetyl-CoA pathway is much more versatile than

that of the glycine synthase pathway. The reductive acetyl-
CoA pathway is used for autotrophic growth, energy

conservation, and as an electron sink. However, the glycine

synthase pathway serves only as an electron sink. Energy

conservation is probably not possible through the glycine

synthase pathway since it does not utilize the enzyme

methylenetetrahydrofolate reductase which is thought to

be coupled to sodium translocation across the membrane

and energy conservation (Martin, 2011). However, there is
no clear reason for why this pathway cannot be used for

autotrophic growth.

The carbon fixation pathways differ in their oxygen
tolerance

A major difference between the different acetyl-CoA-

succinyl-CoA pathways is their suitability for autotrophic

growth in aerobic environments. Pathways which employ

oxygen-sensitive enzymes or cofactors are expected to

operate only in organisms that occupy anaerobic environ-

ments. The oxygen-sensitive enzymes of the acetyl-CoA-

succinyl-CoA pathways are mainly 2-ketoglutarate synthase
(enzyme ‘A1’ in Fig. 1), pyruvate synthase (enzyme ‘B1’),

and 4-hydroxybutyryl-CoA dehydratase (enzyme ‘C4’), all

contain an iron-sulphur cluster and involve free radical

intermediates (Kerscher and Oesterhelt, 1981; Ragsdale,

2003; Martins et al., 2004; Scott et al., 2004; Naser et al.,

2005; Imlay, 2006). Hence, organisms that use the reductive

TCA cycle and the dicarboxylate-4-hydroxybutyrate cycle

are restricted to anaerobic environments, while the
3-hydroxypropionate bicycle can operate under aerobic

conditions (Fig. 1).

However, the oxygen sensitivity of specific enzymes can

vary greatly between organisms, making a clear distinction

between aerobic and anaerobic pathways problematic. For

example, the 4-hydroxybutyryl-CoA dehydratase enzyme of

organisms which employ the 3-hydroxypropionate-4-

hydroxybutyrate cycle is oxygen tolerant (Berg et al.,

2010b), enabling these organisms to grow in aerobic

environments. To support the aerobic operation of this

cycle further, it uses a NADPH-dependent rather than

a ferredoxin-dependent succinyl-CoA reductase (enzyme

‘C1’) (Berg et al., 2007, 2010b; Ramos-Vera et al., 2011)
and it does not use pyruvate synthase to convert acetyl-CoA

to a C3 compound for gluconeogenesis. Instead, succinyl-

CoA is diverted from the cycle and is oxidized to malate

and oxaloacetate, which then undergo decarboxylation to

pyruvate and PEP (Estelmann et al., 2011; Fuchs, 2011).

Indeed, while members of the anaerobic archaeal orders of

Desulfurococcales and Thermoproteales operate the dicar-

boxylate-4-hydroxybutyrate cycle, members of the aerobic
archaeal order of Sulfolobales employ the 3-hydroxypropio-

nate-4-hydroxybutyrate cycle, as expected by the oxygen

tolerance of each of the pathways. However, even this

distinction does not hold in all cases: it was found that even

aerobic members of Desulfurococcales operate the dicarbox-

ylate-4-hydroxybutyrate cycle (although at low O2 concen-

trations) and anaerobic members of Sulfolobales operate the

3-hydroxypropionate-4-hydroxybutyrate cycle (Berg et al.,
2010b). This suggests that the identity of the carbon fixation

pathway used might not always be optimized to environmen-

tal conditions, but might rather be a historical remnant of

the evolutionary trajectory of a species.

Notably, even 2-ketoglutarate synthase and pyruvate

synthase are not always oxygen sensitive. Pyruvate synthase

isolated from the strictly anaerobic bacterium Desulfovibrio

africanus is highly stable in the presence of oxygen (Pieulle
et al., 1997), suggesting that organisms that operate the

reductive TCA cycle might be able to adapt to aerobic

conditions. Indeed, Hydrogenobacter thermophilus, Aquifex

pyrophilus, and other Aquificae bacteria grow aerobically

using the reductive TCA cycle (Shiba et al., 1985; Beh et al.,

1993; Hugler et al., 2007). Hydrogenobacter thermophilus,

for example, uses two isozymes of 2-ketoglutarate synthase,

one of which is relatively oxygen stable, enabling rapid
growth using molecular oxygen as an electron acceptor

(Yamamoto et al., 2003, 2006).

Of the C1 carbon fixation pathways, the reductive acetyl-

CoA pathways (Fig. 2, pathways 1 and 2) can only tolerate

oxygen at a very low level (Drake et al., 2006, 2008;

Imkamp and Muller, 2007; Ragsdale, 2008; Ragsdale and

Pierce, 2008). This is because the pathway employs two of

the most oxygen sensitive enzymes known: NADPH-de-
pendent formate dehydrogenase and the CO-dehydroge-

nase-acetyl-CoA synthase complex.

Interestingly, while the glycine synthase pathway is

known to operate only in anaerobes, it can potentially

support autotrophic growth under aerobic conditions. In-

stead of the NADPH-dependent, oxygen-sensitive formate

dehydrogenase, an oxygen-tolerant, NADH-dependent en-

zyme can be used (Tishkov and Popov, 2006). All other
enzymes required for pyruvate synthesis by the pathway are

oxygen tolerant.
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Thermodynamically challenging reactions

Different carbon fixation pathways differ in their demand

for cell resources (Table 1) (Berg, 2011; Berg et al., 2010a;

Boyle and Morgan, 2011; Fuchs, 2011; Hugler and Sievert,

2011). The resource requirements can be generally divided

into two parts: the ATP and NADPH equivalents needed

for the reduction and fixation of CO2 and the carbon

and nitrogen required for the enzymatic machinery carrying

the fixation process. The former part mostly relates to the

energetics of the carbon fixation process while the latter

mostly refers to its kinetics—efficient enzymatic machinery

requires less enzymes to sustain a desired flux, resulting in

a lower burden of enzyme production. In the following

three sections, the carbon fixation pathways are discussed

and compared according to energetic aspects. In the three

sections to follow, we deal with the kinetics of the path-

ways, discussing enzymes that are expected to limit the rate

of carbon fixation.

Before comparing the carbon fixation pathways as
a whole, it is worthwhile to examine some of the reactions

that are expected to present a thermodynamic difficulty.

Figures 1 and 2 detail DGr’ values for all the reactions

participating in the carbon fixation pathways, under pH 7,

ionic strength of 0.1, and reactants (substrates and prod-

ucts) concentrations of 1 mM [DGr’ values were calculated

as described in Alberty (2003), Flamholz et al. (2011), and

Jankowski et al. (2008)]. DGr’
o values were not used since

they correspond to non-physiological reactant concentra-

tions of 1 M, whereas 1 mM is a ‘more reasonable’ estimate

for metabolite concentrations in vivo (Weber, 2002; Henry

et al., 2006; Bennett et al., 2009; Bar-Even et al., 2011a).

Exploring Figs 1 and 2, the reactions that present a consid-

erable thermodynamic challenge are mostly oxidoreductase

reactions. More specifically, the most energetically challeng-

ing reactions are some of the core CO2 fixing reactions,

including pyruvate and 2-ketoglutarate synthases (reactions

‘A1’ and ‘B1’ in Fig. 1), isocitrate dehydrogenase (reaction

‘A2’), formate dehydrogenase, CO dehydrogenase and

formylmethanofuran dehydrogenase (Fig. 2). Notably, most

of these enzymes utilize the low reduction potential (i.e.

highly energized) ferredoxin (E’0¼ –430 mV) as an electron

donor instead of NAD(P)H (E’0¼ –320 mV). However,

even with the extra energetic push of this electron donor,

operating these reactions in the required direction is

energetically challenging. How can cells overcome this

energetic barrier?

First, the ferredoxin (and NADPH) pool in cells operating

these reactions might be over-reduced ([ferredoxinred]/

[ferredoxinox] >>1). Mechanisms to maintain such over-

reduction are discussed in detail in (Fuchs, 2011; Martin,

2011). However, the over-reduction of the electron donors

might not suffice. For example, even if the vast majority

of ferredoxin molecules are reduced, [ferredoxinred]/

[ferredoxinox]¼100, DGr’ will be lowered by only 11 kJ

mol�1 (compared with the ‘standard’ 1 mM metabolite

concentration case), not enough for some of the challeng-

ing reactions.

A parallel solution is to keep the concentrations of the

products much lower than that of the substrates. For

example, keeping [acetyl-CoA] at ;1 mM and [pyruvate]

and [CoA] at ;1 lM, while operating at high [CO2] of 100

lM (not uncommon in anaerobic environments), will lower

DGr’ for pyruvate synthase by 28 kJ mol�1, enabling the

operation of the reaction in the carboxylation direction even

without the over-reduction of the ferredoxin pool. The
drawback of this approach is that keeping the products of

some enzymes at a low concentration of ;1 lM, below the

KM of most enzymes utilizing them (Bar-Even et al., 2011b),

will result in a low reaction rate of the enzymes which use

these compounds as substrates. This trade-off between

thermodynamics and kinetics means that this approach will

probably not be applied to its full extent and hence some

over-reduction of the electron carrier pool will be required.
Some thermodynamic barriers are so high, that both

a significant over-reduction of the electron carriers and

a large modulation of reactant concentrations are required.

Examples for such thermodynamic barriers are the sequen-

tial operation of 2-ketoglutarate synthase and isocitrate

dehydrogenase (reaction ‘A1’ and ‘A2’ in Fig. 1), which

together presents a cumulative barrier of >40 kJ mol�1, and

the very positive DGr’
o associated with CO dehydrogenase

and formylmethanofuran dehydrogenase (Fig. 2).

Of special interest is the enzyme glyoxylate synthetase,

which seems to present an insurmountable energetic chal-

lenge under physiological metabolite concentrations. More-

over, since this reaction follows formate dehydrogenase,

another energetically challenging reaction, the energetic

barrier for CO2 assimilation into glyoxylate is extremely

large (DGr’
o >70 kJ mol�1). In fact, to enable the operation

of these reactions in tandem, even under an extremely high

[CO2] of 10 mM and [NAD(P)H]/[NAD(P)+] of 106,

[glyoxylate] will have to be <1 nM. This concentration is

too low to be of any metabolic significance. Our analysis

therefore suggests that the glyoxylate synthetase pathway

might be erroneous. Alternatively, it might be the case that

glyoxylate synthetase is coupled to some exergonic reactions

that push it forward. While no evidence for this has been
found yet, the enzyme’s complete mechanism is still

unknown.

The ATP requirement of the different carbon fixation
pathways varies greatly

The number of reducing equivalents required for CO2

fixation is identical for all carbon fixation pathways as they

are the result of only the number of electrons in the starting

and ending compounds. By contrast, the ATP requirement

of different carbon fixation pathways varies greatly, as

shown in Table 1. Why does the ATP requirement differ to

such an extent between the different pathways (Berg et al.,
2010a; Berg, 2011; Fuchs, 2011; Hugler and Sievert, 2011)?

Several possible, non-mutually exclusive explanations for

this phenomenon are suggested and analysed here.

A common explanation relates to the identity of the

electron donors. Different pathways employ different
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combinations of NADPH and ferredoxins to donate

electrons. When both ferredoxin and NAD(P)H are not

over-reduced or over-oxidized, the reduction potential of

ferredoxin is lower than that of NAD(P)H (i.e. is more

energetic). This might indicate that pathways that use more

ferredoxins (instead of NADPH) require less ATP since

they get an extra energetic push from the electron donor. In

fact, it was recently suggested that reduced ferredoxin can
be regarded as a currency of energy just as ATP (Martin,

2011). However, it is important to note that the difference

in reduction potentials between NADPH and ferredoxin

usually provides an energetic push well below that of ATP.

In fact, under standard conditions the replacement of

NADPH by two ferredoxins translates to an extra energetic

contribution of ;20 kJ mol�1, while the hydrolysis of an

ATP molecule, under physiological conditions, contributes
over 50 kJ mol�1 (Tran and Unden, 1998; Wackerhage

et al., 1998; Bennett et al., 2009). Therefore, replacing

NADPH by ferredoxin is unlikely to account fully for the

significant differences in ATP requirements between the

different pathways.

Another line of explanation suggests that the variability in

ATP requirement relates to the differences in redox potential

between the environments the pathways operate in. Specifi-
cally, it was proposed that, for chemolithotrophic growth, it

takes more energy to produce the same biomass under oxic

conditions than under anoxic conditions (McCollom and

Amend, 2005). This is because the electrons that are needed

to reduce CO2 to the various organic constituents of the cell

tend to be at higher energy in anoxic environments whose

reduction potential is lower than that of oxic environments

(McCollom and Amend, 2005). It has therefore been deduced
that organisms that live in anaerobic environments should

require less ATP for carbon fixation.

However, this reasoning is problematic. Electrons taken

from the electron donors are not directly used to reduce

CO2 to the organic constituents of the cell. Rather, they are

first stored in the cellular electron carriers, for example,

NADPH and ferredoxin. Since the ATP requirement

discussed here is invested in the electron path from the
carriers to the fixed carbon (i.e. carbon fixation) and not in

the upstream electron path (i.e. reduction of the electron

carriers by the electron donors), changes in the reduction

potential of the environment are not expected to have

a significant effect on the energy required for carbon

fixation. Instead, the reduction potential of the environment

will mainly affect the way the cellular electron carriers are

reduced. Organisms that grow chemolithotrophically and
use electron donors with high reduction potential (e.g. Fe2+)

must use reverse electron flow to reduce the cellular electron

carriers. In reverse electron flow, some of the energy

generated by the flow of electrons from the donor to the

terminal acceptor and stored in the proton (or sodium)

gradient across the membrane is used to push electrons

‘uphill’ from the donor to NAD(P)H (or other electron

carrier) (DiSpirito and Tuovinen, 1982; Brune, 1989; Stout-
hamer et al., 1997; Elbehti et al., 2000; Blankenship, 2002;

Klamt et al., 2008).

Unlike the reduction potential of the environment which

can vary greatly, the reduction potential range of the

cellular electron carriers is rather restricted. A reduction

potential far from the standard reduction potential means

that either the reduced form or the oxidized form must be at

a very low concentration. This is deleterious for cell functions

since it results in poor kinetics of the enzymes utilizing the

compound. Considering NADPH, which participates in all
carbon fixation pathways, as a benchmark, it is extremely

unlikely that [NADPH]/[NADP+] can be lower than 10�6 or

higher than 106. This limits the reduction potential available

for carbon fixation to lie between –500 mV and –150 mV,

regardless of the reduction potential of the environment.

Another potential explanation for the range of ATP

requirements involves the energy available for different

organisms to operate carbon fixation. Specifically, organ-
isms that occupy environments that are poor in energy

sources will employ one of the pathways with a low ATP

requirement. For example, methanogens and acetogens

operate very close to the thermodynamic limit, having

little spare energy to invest (Deppenmeier and Müller,

2008; Fuchs, 2011). The extremely low energy requirement

of the reductive acetyl-CoA pathway therefore fits their

energetic constraints. The anaerobic photosynthetic green
sulphur bacteria, which live at a depth of more than 100 m

below the surface of anoxic water-bodies such as the Black

Sea, provide another example (Overmann et al., 1992;

Manske et al., 2005). Such an extremely low-light environ-

ment (<4 lE m�2 s�1) constrains the amount of energy the

organism can spend on carbon fixation. Indeed, the green

sulphur bacteria use the reductive TCA cycle, which requires

only two ATP molecules to form pyruvate. This organism
also uses photosystem I, which can directly reduce ferredoxin

and NADPH without resorting to energy-consumptive re-

verse electron flow (Hauska et al., 2001).

Finally, the inorganic carbon concentration is an addi-

tional environmental factor that has a significant effect on

the ATP requirement. Higher [CO2] translates to a more

favourable energetics of carbon fixation and hence to

a lower ATP requirement. For example, organisms that
operate the reductive acetyl-CoA pathway cannot be

cultivated without the addition of significant amounts of

inorganic carbon (>130 mM) (Drake et al., 2006). As for

sustaining the electron carriers’ reduction potential low

enough by reverse electron flow, the cellular concentration

of inorganic carbon can be increased by energy-dependent

carbon-concentrating mechanisms which are known to

operate in both chemolithotrophic (Heinhorst et al.,
2006; Yeates et al., 2008; Dobrinski, 2009; Minic and

Thongbam, 2011) and photosynthetic organisms (Kaplan

and Reinhold, 1999; Giordano et al., 2005; Price et al.,

2008).

Feasibility of carbon fixation as an interplay between
various factors

In the above analysis, three main factors that affect the

energetic feasibility of carbon fixation were noted. These
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are: the number of ATP molecules hydrolysed in the

process, the cellular concentration of inorganic carbon, and

the redox potential that is utilized to reduce CO2. Ferre-

doxin and NADPH are expected to have different (concen-

tration-dependent) reduction potentials under physiological

conditions. Yet, for the ensuing analysis, the (concentra-

tion-dependent) reduction potentials of both ferredoxin and

NADPH have been treated as identical. While such an

assumption is certainly over-simplistic, it enables straight-

forward comparison of the different carbon fixation path-

ways and provides some key observations into the

constraints imposed on carbon fixation.

Figure 3 presents the interplay between these parameters

in the fixation of inorganic carbon to three central

metabolites. For each product, the minimal number of

ATP molecules required for thermodynamic feasibility is

indicated. Maximal CO2 concentration is taken to be

10 0003 ambient, corresponding to pure CO2 at about 3

atm. The electron carrier’s reduction potential is taken to lie

between –500 mV and –150 mV, as explained above. While

other varying factors such as pH, ionic strength, and metal

ion concentrations also affect the energetics of the carbon

fixation process (Alberty, 2003; Bar-Even et al., 2010), it

was found that these typically have a secondary effect when

compared with the three parameters analysed in Fig. 3.

Comparing Fig. 3 with Table 1 suggests that most carbon

fixation pathways hydrolyse more ATP molecules than are

needed for energetic feasibility. For example, the reductive

pentose phosphate cycle, which produces glyceraldehyde-3-

phosphate, consumes 9 ATP molecules even though the

thermodynamic minimal requirement is predicted at 4–5

ATP molecules (given a redox potential of ;300 mV and an

ambient CO2 concentration). The extra ATP molecules are

not essential for the thermodynamic feasibility but are used

to create irreversibility points that ensure the cycle’s

operation in the correct direction (Bar-Even et al., 2010)

and also to establish a strong chemical motive force that

translates to an increased carbon fixation rate (Beard and

Qian, 2007).

More interesting are those pathways that, according to

Fig. 3, operate near their thermodynamic limit. The re-

ductive TCA cycle requires two ATP molecules to reduce

CO2 to pyruvate. Therefore, in order to operate the cycle

under moderate CO2 concentrations, the host organism

must keep the reduction potential available for carbon
fixation well below –300 mV. The reductive acetyl-CoA

pathway presents an even harsher energetic challenge. The

reductive acetyl-CoA pathway hydrolyses less than one

ATP molecule in the formation of pyruvate: one ATP is

invested in the ATP-dependent linkage of formate and

tetrahydrofolate (Fig. 2) but, in addition, ATP is produced

later following coupling of some of the pathway’s oxida-

tion–reduction reactions to sodium translocation across the
membrane (Imkamp and Muller, 2007; Ragsdale and

Pierce, 2008; Ljungdahl, 2009; Biegel and Muller, 2010;

Fuchs, 2011; Martin, 2011). Figure 3 suggests that this

extremely low ATP investment enables carbon fixation only

at a very low reduction potential and at very high inorganic

carbon concentrations, as supported by the literature

(Drake et al., 2006).

Interestingly, while the glycine synthase pathway also
displays a very low ATP requirement, it is less likely to run

into energetic difficulties. As this pathway is used as an

electron sink, reducing power can accumulate within the

cell until the pathway becomes feasible. It is reasonable to

suggest that organisms that employ the pathway operate at

reduction potentials well below –300 mV, enabling them to

use CO2 as an electron sink even at near ambient

concentrations.

Estimating the kinetics of carbon fixation

While the energetics of carbon fixation can be calculated

rather precisely, its kinetics is more difficult to estimate in

Fig. 3. ATP requirement for the reduction of CO2 to acetate, pyruvate, and glyceraldehyde-3-phosphate, as a function of the electron

carriers’ redox potential and CO2 concentration. The ATP requirement was calculated as: DGr’ (n NADPH+m CO2/n NADP++product+y

H2O)/DGr’ (ADP+Pi/ATP+H2O), where Gibbs energies of formation were taken from Alberty (2003), [NADPH]/[NADP+] was taken to match

the cellular redox potential in the y-axis, [CO2] was taken according to the x-axis (ambient conditions¼387 ppm), [product]¼1 lM and DGr’

(ADP+Pi/ATP+H2O)¼50 kJ mol�1 as in E. coli (Bennett et al., 2009). DGr’ was calculated at pH 7 and an ionic strength of 0.1 M using the

methodology presented in Alberty (2003). If the calculated ATP requirement was not an integer, it was rounded up. Negative values mean

the ATP can be produced, rather than consumed, by the pathway.
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an accurate manner. One way to do so is by Metabolic Flux

Analysis and similar methods that use mathematical model-

ling and experimental flux measurements to calculate the

flux distribution within an entire biochemical reaction

network (Morgan and Rhodes, 2002; Schwender et al.,

2004; Libourel and Shachar-Hill, 2008; Kruger and Rat-

cliffe, 2009). Such a recent study, for example, reconstructed

the flux maps of photoautotrophic metabolism by a compu-

tational analysis of dynamic isotope labelling measurements

(Young et al., 2011). This methodology represents a promis-

ing tool for the elucidation of the in vivo kinetics of different

carbon fixation pathways. However, experimental flux

measurements are scarce, hence limiting the applicability of
this approach.

In a previous study, a simplified but generic method to

estimate the kinetics of a pathway was suggested based on

a criterion termed the ‘pathway specific activity’ (Bar-Even

et al., 2010). The pathway specific activity is analogous to

an enzyme’s specific activity and is defined to be the

maximal rate of product formation by 1 mg of pathway

total protein (Bar-Even et al., 2010). Briefly, in order to

maintain a product flux of 1 lmol min�1 through a given

enzyme i, 1/Vi mg of that enzyme is needed, where Vi is the

enzyme’s specific activity, in units of lmol min�1 mg�1. 1/Vi

is therefore the enzyme cost of that reaction (mg enzyme

needed to achieve 1 lmol min�1 of flux). The enzyme cost
of an entire linear pathway is the sum of the individual

enzyme costs, i.e. R(1/Vi). This sum corresponds to how

many mg of total enzyme are needed to sustain an overall

flux of 1 lmol min�1. The pathway specific activity is

defined to be the flux (lmol min�1) sustained by 1 mg

of pathway total protein; therefore, it equals the reciprocal

of the total enzyme cost, 1/(R(1/Vi)). In the general case of

non-linear pathways, the fluxes through individual enzymes

are not necessarily the same. In such a case, a stoichiometric

coefficient, wi, is assigned to each reaction i, which

corresponds to the number of catalytic cycles the reaction

requires to produce one molecule of the pathway’s product.

The enzyme cost for each reaction is multiplied by its

stoichiometric coefficient and the pathway specific activity is
given by 1/(R(wi/Vi)) (Bar-Even et al., 2010).

The overall flux through a pathway is approximated by

the pathway specific activity criterion when: (i) the enzymes

are substrate saturated, (ii) the rate of the backward

reaction of each enzyme is negligible compared with the

rate of its forward reaction, and (iii) enzyme expression

levels are balanced based on each enzyme’s specific activity

(no ‘surplus’ of any enzyme). Obviously, in natural path-

ways none of these requirements fully holds; therefore

the pathway specific activity serves mainly as an upper

limit useful for comparing the overall rate of alternative

pathways realizations.
The pathway specific activity approximation has several

further drawbacks. For example, the criterion is based on

kinetic parameters measured in vitro, which can be consid-

erably different from those experienced in vivo (Ringe and

Petsko, 2008; Wright et al., 1992). Also, for some enzymes,

kinetic data are scarce or might be improved considerably if

the enzyme could have been purified more efficiently.

However, in spite of these shortcomings, the pathway

specific activity approximation provides a useful, unbiased

methodology to get a rough evaluation of the pathway

kinetics and to compare alternative metabolic pathways

when direct experimental measurements are not available.

Carboxylating enzymes are often among the slowest
enzymes in the carbon fixation pathways

Metabolic Control Analysis suggests that the flux within

a pathway is controlled by several enzymes, such that no

enzyme can be regarded as a sole kinetic bottleneck (Fell,
1992; Stitt, 2004). However, most carbon fixation pathways

utilize one or more enzymes with especially slow kinetics.

These enzymes are expected to be expressed at a high

expression level and hence become a significant sink for the

carbon and nitrogen resources of the cell, possibly limiting

its growth. The utilization of such enzymes can dramatically

decrease the pathway specific activity of the carbon fixation

pathway.
A detailed quantitative analysis suggests that many of the

enzymes that considerably lower the pathway specific

activity of carbon fixation pathways are the carboxylating

enzymes themselves (Bar-Even et al., 2010). Kinetically

superior carboxylating enzymes are those which display

high kcat but also have good affinity towards CO2 or

HCO3
�. As suggested previously (Bar-Even et al., 2010),

the most kinetically favourable carboxylating enzymes
appear to be PEP and pyruvate carboxylases, having high

specific activity (25–50 lmol min�1 mg�1) and a high

affinity toward HCO3
�.

Rubisco, the carboxylating enzyme that operates in the

reductive pentose phosphate cycle, is considerably slower

(specific activity of 2–4 lmol min�1 mg�1) and has an

incomplete specificity toward CO2 in the presence of ambient

concentrations of O2 (Sage, 2002; Long et al., 2006; Raines,
2006). The slowest enzyme of the 3-hydroxypropionate

bicycle is also a carboxylating enzyme: propionyl-CoA

carboxylase, which under ambient CO2 concentration is

expected to have a specific activity that is only somewhat

higher than that of Rubisco. In fact, the pathway specific

activity criterion suggests that the overall kinetics of the

reductive pentose phosphate cycle, neglecting photorespira-

tion, is similar to that of the 3-hydroxypropionate bicycle
(;0.4 lmol (glyceraldehyde-3P) min�1 mg�1) (Bar-Even

et al., 2010). However, when photorespiration is considered,

the 3-hydroxypropionate bicycle is expected to be 1.5 times

faster than the reductive pentose phosphate cycle (Bar-Even

et al., 2010).

The carbon fixation cycles which use the carboxylating

enzymes pyruvate synthase and 2-ketoglutarate synthase

present a special challenge for kinetic estimation. The
kinetics of the reductive reaction of these enzymes has not

been well-characterized and the specific activities which

were measured in the reductive direction are quite low. For

example, pyruvate synthase from Chlorobium tepidum has

a specific activity which is less than 0.1 lmol min�1 mg�1
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(Yoon et al., 1999). A similar enzyme from Thermococcus

litoralis has a higher specific activity of ;2.3 lmol min�1

mg�1 but a very low affinity towards CO2 (KM¼48 mM),

making it extremely slow unless the CO2 concentration is

very high (Heider et al., 1996). Finally, Clostridium ther-

moaceticum operates an enzyme with a higher affinity

towards CO2, KM¼2 mM, but a lower specific activity of

1.6 lmol min�1 mg�1 (kcat¼3.2 s�1) (Furdui and Ragsdale,
2000).

Yet, some organisms that operate the reductive TCA

cycle, using both pyruvate synthase and 2-ketoglutarate

synthase, are known to have a very fast doubling time. For

example, Hydrogenobacter thermophilus strain TK-6 can

reach a doubling time of about 1 h when oxidizing

hydrogen under aerobic conditions (Yamamoto et al.,

2006). It will be interesting to investigate how pyruvate and
2-ketoglutarate synthases have been evolved to facilitate

such a fast growth.

Other factors that significantly affect the rate of carbon
fixation

An important factor that influences pathway kinetics but is

not taken into account in the pathway specific activity

criterion is the chemical motive force (DGr’ for the

reaction). The rate of a metabolic process is indirectly

related to the chemical motive force: DGr’ dictates what

fraction of the enzymatic machinery catalyses the forward

reaction (Beard and Qian, 2007; Qian et al., 2003). High
chemical motive force means that most of the enzymatic

machinery is catalysing the forward reaction, resulting in

a higher metabolic conversion rate. For example, DGr’ of

6 kJ mol�1 corresponds to ;90% of the enzymes catalysing

the forward direction; hence, if the kcat values of the

forward and backward reactions are similar, the reaction

proceeds in ;80% of its maximal rate (assuming substrate

saturation). On the other hand, low chemical motive force
implies that a significant fraction of the enzymatic machin-

ery catalyses the reverse direction, leading to lower net flux

(Beard and Qian, 2007).

Since the reductive TCA cycle and the reductive acetyl-

CoA pathway are expected to operate close to the

thermodynamic edge, the chemical motive force supporting

carbon fixation by these pathways is expected to be small.

Hence, a large fraction of their enzymatic apparatus is
expected to catalyse the backward reaction, increasing

significantly the amount of total protein needed to support

an adequate net carbon fixation flux. For example, the

energetic challenge associated with CO-dehydrogenase

results in a low chemical motive force for CO2 reduction

and further translates into a high protein requirement.

Indeed, the CO-dehydrogenase-acetyl-CoA synthase com-

plex represents a significant fraction of the soluble cell
protein of acetogens (Drake et al., 2006).

Another important parameter that affects pathway kinet-

ics is the inorganic carbon species accepted by the carbox-

ylating enzymes: CO2 or bicarbonate. At a given pH, this

preference is expected to have only a minor effect on

pathway energetics since the inorganic carbon species are

assumed to equilibrate relatively fast (Alberty, 2003).

However, the pathway kinetics is highly dependent on this

preference. The concentration of dissolved CO2 depends on

the partial pressure of CO2 in the air and on the solubility

of CO2 in water, which in turn is a function of temperature

and salinity, but not of pH (Hunter, 1998; Sander, 1999).

By contrast, the bicarbonate concentration depends on the
dissolved CO2 concentration and on the pH (Hunter, 1998).

At pH 7 and above, the concentration of the bicarbonate

becomes progressively higher than that of dissolved CO2.

Therefore, at environments in which pH >7, organisms that

employ carboxylating enzymes that accept bicarbonate

(rather than CO2) are expected to work closer to substrate

saturation (Berg et al., 2007). As shown in Table 1, the

3-hydroxypropionate bicycle and the 3-hydroxypropionate-
4-hydroxybutyrate cycle are the only carbon fixation

pathways that utilize mainly bicarbonate.

Are there any other carbon fixation pathways out there?

The existence of such a variety of carbon fixation pathways

suggests that maybe some natural alternatives are yet to be

revealed (Berg et al., 2010a; Berg, 2011; Fuchs, 2011).

Indeed, there are a few organisms that are known to grow

autotrophically without any of the known carbon fixation

pathways (Berg et al., 2010a, b; Berg, 2011). Since most

carbon fixation cycles have a similar underlying structure

(Fig. 1), it is tempting to suggest that other solutions of the
same general structure operate in nature. While the exact

elucidation of such novel solutions will require extensive

biochemical detective work, identifying the existence of key

enzymes by genomic approaches might help in suggesting

whether an organism is operating a unique variant of

a carbon fixation pathway (Campbell and Cary, 2004;

Chong et al., 2007; Auernik et al., 2008; Podar et al., 2008).

In the following section we try to speculate what, as yet
undiscovered, carbon fixation might look like. We stress

that the pathways discussed below are ultimately no more

than guesswork. However, such considerations might help

obtain a deeper understanding of the known pathways

as well as provide useful ideas for future genetic and

biochemical research.

A relatively small metabolic deviation from

the 3-hydroxypropionate bicycle would be the assimilation
of glyoxylate not through citramalate (Fig. 1, column ‘E’)

but using other metabolic alternatives. Figure 4A presents

three existing pathways that assimilate glyoxylate into

central metabolism by converting it either to glycerate or

pyruvate. While some of these options are superior over the

others in terms of energy efficiency, all three suffer from the

same disadvantage with respect to the 3-hydroxypropionate

bicycle: they release one CO2 for every two glyoxylate
molecules being assimilated. Therefore, a quarter of all the

CO2 molecules that were fixed are released again, decreasing

the net efficiency of the carbon fixation process. For carbon

fixation pathways that operate near the thermodynamic

limit, this loss of CO2 might be advantageous, making the
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energetics more favourable. However, since the 3-hydrox-

ypropionate bicycle already involves the investment of seven

ATP molecules, a further energetic investment is not

required. It therefore seems that the bicycle provides

a unique solution for glyoxylate assimilation without futile

carbon release.
Figure 1 suggests that different combinations of down-

ward metabolic arms (columns ‘B’ and ‘D’) and upward

metabolic arms (columns ‘A’, ‘C’, and ‘F’), which have not

yet been found to operate in nature, might represent novel

carbon fixation pathways. Of special interest is the combi-

nation of column ‘B’ with column ‘F’. Since these columns

contain some overlapping reactions, their combination

‘shortcuts’ many metabolic steps, giving rise to the short
pathway shown in Fig. 4B. Glyoxylate, the cycle’s product,

can then be assimilated using the pathways discussed above

(Fig. 4A). Since the energetics of this cycle is not as

favourable as that of the 3-hydroxypropionate bicycle, the

decarboxylation associated with glyoxylate assimilation

might be beneficial in driving the cycle forward. Notably,

this cycle was once suggested to operate in Chloroflexus

aurantiacus B-3 (Ivanovsky, 1993), but this hypothesis has

since been abandoned. It is an open challenge to the

community to utilize state of the art biochemical and

genomic capabilities to revisit this forgotten pathway.
Focusing on the upward metabolic arms of Fig. 1,

another simple way to recycle succinyl-CoA into two

acetyl-CoA molecules is by a variant of the glyoxylate shunt

(Beeckmans, 2001) running in reverse (Fig. 4C). To energize

the reverse metabolic flow of this cycle, two ATP molecules

are hydrolysed by two enzymes that are not used by the

normal glyoxylate shunt: ATP-citrate lyase which cleaves

citrate to acetyl-CoA and oxaloacetate (see Supplementary
Table S1 at JXB online) and malyl-CoA synthetase. The

latter enzyme is somewhat exotic and was found to operate

in only a small number of organisms (Hersh, 1973, 1974).

However, this enzyme can be bypassed by another enzyme,

succinyl-CoA-malate CoA transferase, which operates in

Fig. 4. Possible metabolic structures that might operate in yet undiscovered carbon fixation pathways.(A) Metabolic alternatives for the

assimilation of glyoxylate into central metabolism. The magenta arrows of the left cycle correspond to the photorespiration pathway of

plants (Kebeish et al., 2007; Bauwe et al., 2010), while the brown arrows correspond to the bacterial-like glycerate pathway (Eisenhut

et al., 2006). The right cycle represents glyoxylate assimilation via the TCA cycle and the glyoxylate shunt. (B) A proposed carbon fixation

cycle, which results from combining columns ‘B’ and ‘F’ of Fig. 1. (C) A proposed metabolic alternative of recycling succinyl-CoA into

two acetyl-CoA molecules by a variant of the glyoxylate shunt, running in reverse.
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the 3-hydroxypropionate bicycle (see Supplementary Table

S1 at JXB online) (Friedmann et al., 2006). This enzyme

directly transfers the CoA moiety of succinyl-CoA to

malate, forming malyl-CoA (Friedmann et al., 2006). The

enzyme malyl-CoA lyase can then cleave malyl-CoA into

acetyl-CoA and glyoxylate (Fig. 5; see Supplementary Table

S1 at JXB online) (Hacking and Quayle, 1974, 1990; Herter

et al., 2002a; Meister et al., 2005). Taken together, the
reactions of this cycle are either abundant or can be readily

evolved from existing enzymes. Moreover, none of the

enzymes participating in the cycle represent special difficul-

ties like oxygen sensitivity. Therefore, it is tempting to

suggest that this metabolic alternative for succinyl-CoA

cleavage might operate in some organisms.

Interestingly, the metabolic pathways used by methylo-

trophic organisms to assimilate reduced C1 compounds to
central metabolism (Lidstrom, 2006; Seo et al., 2007), can

potentially be employed for autotrophic CO2 assimilation.

The ribulose monophosphate pathway and the xylulose

5-phosphate cycle assimilate free formaldehyde while the

serine pathway assimilates formaldehyde while being

attached to THF (5,10-methylene-THF) (Lidstrom, 2006;

Seo et al., 2007). Chemolithotrophic or phototrophic

organisms can directly reduce CO2 to formate, attach it to
THF and reduce it to 5,10-methylene-THF, enabling

carbon fixation through the serine pathway. Since

5,10-methylene-THF and its derivatives can be enzymati-

cally or spontaneously cleaved to produce formaldehyde

(Kallen and Jencks, 1966), the ribulose monophosphate

pathway and the xylulose 5-phosphate cycle can also serve

as effective CO2 fixation pathways.

Deviating even further from the known pathways, the
existence of a large repertoire of metabolic enzymes (;5000

known so far; Kanehisa and Goto, 2000) offers countless

combinations that can potentially sustain carbon fixation.

In a previous study, computational tools were used

systematically to locate and analyse pathways that are

composed of naturally occurring enzymes and capable of

carbon fixation (Bar-Even et al., 2010). Numerous possible

thermodynamically feasible and kinetically viable pathways
have been identified. In particular, a new family of carbon

fixation pathways is suggested that makes use of the most

effective carboxylating enzyme, PEP carboxylase and of the

metabolic module used in the efficient C4 plants (Bar-Even

et al., 2010). While most of these alternatives probably exist

only in silico, it is possible that some actually operate in

vivo, waiting to be discovered.

Concluding remarks

The diversity of metabolic alternatives for carbon fixation,

each with its own unique characteristics, is a treasure for

metabolic engineering, as it enables fitting an organism with
the most appropriate pathway (Boyle and Morgan, 2011).

Expressing a foreign carbon fixation within a host might

serve many goals. For example, switching the carbon

fixation pathway of a plant or alga can potentially increase

its productivity under specific desirable conditions. Also,

adopting a biotechnologically important heterotrophic mi-

crobe, such as E. coli or S. cerevisiae, to an autotrophic

mode of growth is a promising venue for the production of

various commodities without the need of costly feedstock

which compete with human and animal consumption

(DOE, 2011; Hawkins et al., 2011). In all of these cases, it

is important to pick the right carbon fixation pathway for

the host. In choosing a suitable pathway one should
consider, for example, the following aspects: (i) Does the

oxygen tolerance of the pathway suit the intended cultiva-

tion conditions? (ii) Does the ATP requirement of the

pathway fit the expected cellular energy influx? (iii) Does

the expected kinetics of the pathway coincide with the

desirable growth rate? (iv) Does the structure of the

pathway integrate well with the endogenous metabolic

network? (v) Do the optimal temperatures of the enzymes
participating in the chosen pathway fit the intended

cultivation temperature?

Regardless of the reason for which one is interested in

carbon fixation, whether it is purely scientific or biotechno-

logical, many more interesting discoveries can still be

expected in the years to come. The repertoire of carbon

fixation pathways currently known is expected to grow as

more organisms are cultivated, sequenced, and biochemi-
cally analysed, so it may well be possible to build a more

comprehensive picture of the design principles of carbon

fixation pathways.

Supplementary data

Supplementary data can be found at JXB online.

Supplementary Table S1. Enzymes of the acetyl-CoA-

succinyl-CoA carbon fixation cycles (as shown in Fig. 1).

Supplementary Table S2. Enzymes of the C1 carbon
fixation pathways (as shown in Fig. 2).
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