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Comparing the energy landscapes for native folding
and aggregation of PrP
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ABSTRACT. Protein sequences are evolved to encode generally one folded structure, out of a nearly
infinite array of possible folds. Underlying this code is a funneled free energy landscape that guides
folding to the native conformation. Protein misfolding and aggregation are also a manifestation of
free-energy landscapes. The detailed mechanisms of these processes are poorly understood, but often
involve rare, transient species and a variety of different pathways. The inherent complexity of
misfolding has hampered efforts to measure aggregation pathways and the underlying energy
landscape, especially using traditional methods where ensemble averaging obscures important rare
and transient events. We recently studied the misfolding and aggregation of prion protein by
examining 2 monomers tethered in close proximity as a dimer, showing how the steps leading to the
formation of a stable aggregated state can be resolved in the single-molecule limit and the underlying
energy landscape thereby reconstructed. This approach allows a more quantitative comparison of
native folding versus misfolding, including fundamental differences in the dynamics for misfolding.
By identifying key steps and interactions leading to misfolding, it should help to identify potential
drug targets. Here we describe the importance of characterizing free-energy landscapes for
aggregation and the challenges involved in doing so, and we discuss how single-molecule studies can
help test proposed structural models for PrP aggregates.
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INTRODUCTION

Many neurodegenerative diseases are
believed to be caused at least in part by the mis-
folding and aggregation of specific proteins,
including Alzheimer’s (Ab peptide),
Parkinson’s (a-synuclein), ALS (SOD1) and
the spongiform encephalopathies (prion protein
PrP).1,2 In each case, the protein misfolds and
aggregates into a form that is rich in b-sheets,
ultimately forming insoluble amyloid fibrils.
Given the importance of protein misfolding and
aggregation to disease, it is extremely impor-
tant to understand the molecular mechanisms
behind this structural conversion. However,
detailed examination of misfolding and aggre-
gation mechanisms is challenging owing to the
heterogeneous and complex pathways
involved. Early stages of these pathways likely
involve rare, transient intermediates, ultimately
leading to larger, insoluble oligomers—both of
which present challenges for detailed structural
and biophysical characterization. In the case of
PrP, neither the structure of the infectious scra-
pie isoform (PrPSc) nor the mechanism for con-
version of native PrP (PrPC) is known, although
various models have been proposed for the
structure of PrPSc3-6 and the conversion
mechanism.2,7

Underpinning the molecular events that lead
to protein aggregation is the energy landscape
(Fig. 1), which represents the energy of the
protein as a function of all possible conforma-
tions. The landscape encodes the relative sta-
bilities of different states (e.g. native, partially
folded intermediate, unfolded, misfolded, solu-
ble oligomer, or insoluble aggregate) and the
energy barriers that separate them. The current
view of energy landscapes for protein misfold-
ing and aggregation is generally qualitative
rather than quantitative, due to a paucity of
appropriate experimental data. In a funnelled
energy landscape, high-energy, high-entropy
unfolded states at the top of the funnel fold

along any variety of paths down to the low-
energy, low-entropy native conformation.
Native folding is relatively efficient because
the native state is comprised of a network of
mutually supportive stabilizing contacts – they
are said to be minimally frustrated.8 In con-
trast, misfolding and aggregation are charac-
terized by multiple competing conformations
separated by substantial kinetic barriers; the
landscape for inter-molecular aggregation,
which is generally believed to be linked to the
folding landscape via non-native structures, is
thus imagined as being much rougher than for
native folding.9

This view is supported experimentally by the
observation that misfolding and aggregation are
complex, apparently involving many different
intermediates and competing pathways.10-13

Energy landscapes for misfolding and aggrega-
tion have been calculated from simulations14-16

and partial free-energy surfaces—for example
describing the native and near-native confor-
mations—have been examined both by experi-
ment and simulation.17-20 Thermodynamic
stabilities and activation energies for amyloid
formation were also examined experimen-
tally.21,22 However, energy landscapes for
aggregation have not been reconstructed exper-
imentally, limiting the understanding of the
fundamental determinants of aggregation.

ENERGY LANDSCAPES AND
KINETICS IN FOLDING

Misfolding and aggregation are dynamic,
with timescales ranging from ms–ms (for the
earliest events that may initiate aggregation) to
minutes or hours (oligomerization) and hours
to weeks (fibrillization). The underlying energy
landscapes can be used to understand this pro-
gression from a natively folded protein into a
large aggregate. In particular, the barriers and
‘bumps’ along the energy landscapes determine
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the timescale for misfolding and aggregation.
Kinetics are very important in protein aggrega-
tion23-25 and thus to the development of thera-
peutics.26 If the aggregated form is more
thermodynamically stable than the native
fold,21 then it is only the kinetic barriers that
prevent spontaneous misfolding and aggrega-
tion. Modulating kinetic barriers may offer a
therapeutic strategy to treat protein misfolding
disease, for example by designing ligands that
kinetically stabilize the native conformation27

so as to delay unfolding and subsequent aggre-
gation. For PrP, previous work suggested that
the native structure is kinetically trapped by a
»20 kcal/mol barrier separating it from a more
thermodynamically stable, b-rich oligomeric
state, and mutations or ‘seed’ aggregates
(PrPSc) were postulated to enhance aggregation
by stabilizing the misfolding transition state.28

Such a scenario suggests possible approaches
to inhibiting aggregation by blocking the bind-
ing to PrPSc via transition-state analogs29 or
kinetically trapping PrPSc intermediates to pre-
vent progress down the pathological aggrega-
tion pathway.30

Kinetic barriers in folding are typically
viewed as arising from the competing effects
of enthalpy and entropy during structural
changes: structured states are generally
enthalpically favored but entropically disfav-
oured, and mismatches in the free-energy
changes caused by enthalpy and entropy
reduction result in barriers.31 Although they
play a critical role in folding because
they dominate the dynamics, barriers are
difficult to characterize quantitatively in a reli-
able manner. The barrier height, DGz, is usu-
ally inferred from the rate constant, k, which

FIGURE 1. Energy landscape cartoons depicting native folding (left) and aggregation (right). Non-
native species often connect the 2 regimes. The landscape is expected to be more rugged for
aggregation, having deeper kinetic traps. Single-molecule force spectroscopy can measure the crit-
ical landscape properties like the energetic stabilities of the different states (including intermedi-
ates), the heights of the energy barriers between states, the position of the barriers along the
reaction coordinate, and the diffusion coefficient that connects the landscape properties to the
observed kinetics of structure formation.

COMPARING THE ENERGY LANDSCAPES 209



is easily determined experimentally:

kD k0exp.¡DGz=kBT/; [1]

where T is temperature, kB is Boltzmann’s con-
stant, and k0 is the rate prefactor or ‘attempt
frequency’. The challenge for relating rates to
DGz is determining k0. One approach uses the
Eyring equation from transition-state theory:
k0 D k(kBT/h), where h is Planck’s constant and
k the transmission coefficient (relating to the
probability that the molecule crosses the bar-
rier, often assumed to be 1).32 However, this
approach overestimates k0 for protein folding,
because it neglects diffusive barrier recrossing
and thus also overestimates DGz.

Kramers’ theory for diffusive barrier cross-
ing32 provides a better framework for determin-
ing k0:

k0DD
ffiffiffiffiffiffiffiffiffiffi

kwkb
p

=2pkBT ; [2]

where D is the intrachain diffusion coefficient
and kw and kb relate to the local curvature of
the landscape in the potential well and barrier
top, respectively. Here, D reports on the config-
urational dynamics of the protein chain, rather
than on translational diffusion. Note that in
Kramers’ theory, the prefactor can vary from
one protein to the next, or even for different
transitions in the same protein (for multi-state
folding), because of changes in k and D. Hence
imputing changes in rates at a given tempera-
ture (e.g., upon mutation of the protein or com-
paring native and non-native folding) solely to
changes in DGz, as often done,33 is not gener-
ally valid.34 Kramers’ theory has been shown
to describe protein folding well both in simula-
tions35,36 and experiments.37,38

Although applying Kramers’ theory to
ensemble measurements of protein folding can
be challenging, 39 single-molecule measure-
ments provide fertile ground. This is especially
true for single-molecule force spectroscopy
(SMFS), in which the extension of a protein is
measured as its structure changes in response
to a denaturing force applied to its ends.40

SMFS has been used extensively to study the
folding energy landscapes of both proteins and

nucleic acids.41 Because SMFS data capture
the statistical mechanics of the structural fluc-
tuations, they can be used to measure energy
landscapes in greater detail than possible at
the ensemble level. Multiple methods can be
used to quantify the landscape, from recon-
structions of the full energy profile42-46 to
descriptions of the most critical features like
barrier heights and positions47,48 and diffusion
coefficients.38,44,49,50

OBSERVING PrP AT THE SINGLE-
MOLECULE LEVEL: FOLDING AND
MISFOLDING ENERGY LANDSCAPES

The dynamics of PrP relevant to misfolding
and aggregation have been studied extensively
at the ensemble level by experiment10,28,51-53

and at the molecular scale by computation.17-
19,54-56 Single-molecule studies have been less
common,57 however, even though they are ide-
ally suited for probing aggregation because of
their ability to detect and characterize sub-pop-
ulations and transient or rare states.58 We previ-
ously used SMFS to show that isolated
monomers of hamster PrP(90-231) frequently
sampled a variety of misfolded conformations
off the pathway for native folding,38,59 but did
not form partially-folded on-pathway inter-
mediates postulated to mediate misfolding.60-62

None of the misfolded conformations was ther-
modynamically stable, consistent with the view
that misfolded PrP is stable only within aggre-
gates7 but contradicting the report of a stable
monomeric misfolded form.63 These measure-
ments led to a reconstruction of the full energy
profile for native folding of PrP,38 but they
could not speak to the landscape for aggrega-
tion because they did not study the interactions
between monomers that stabilize misfolding.

To observe directly the formation of stable
misfolded structures, we investigated the fold-
ing of individual dimers of PrP, as the smallest
form of oligomer, using SMFS.64 Monomers of
hamster PrP(90-231) were covalently con-
nected in tandem to generate dimers (Fig. 2A).
Covalent linking greatly increases the effective
local concentration to promote aggregation,

210 D. R. Dee and M. T. Woodside



providing a platform to focus on early events in
misfolding and aggregation.15,65 PrP dimers
were held in dual-beam optical tweezers
(Fig. 2B), and the force ramped up and down
to unfold and refold the protein, generating
force-extension curves. Abrupt changes in the
force and extension creating ‘rips’ in the force-
extension curves reflected structural transitions

in the protein and were characterized by the
force at which they occurred and the change in
contour length (DLc) observed. In contrast to
the 2-state behavior of monomers, dimers
passed through at least 3 intermediates, as
determined by the minimum number of transi-
tions needed to fit the dimer curves (Fig. 2C).
Furthermore, DLc upon unfolding the dimer

FIGURE 2. Summary of single-molecule force spectroscopy experiments. (A) Design of the PrP
tandem dimer, indicating the native structural elements and the proposed region for ID1 formation.
(B) In the experimental set-up of optical tweezers, PrP molecules are tethered between 2 polysty-
rene beads via DNA handles, and the beads are trapped using high-intensity laser beams. Moving
the beads apart and back together again ramps the force on the protein up and down to cause
unfolding and refolding. (C) Examples of pulling curves showing unfolding and refolding of a PrP
monomer (left) and a PrP dimer (right), where each transition gives rise to a ‘rip’ in the force-exten-
sion curve. Dashed lines indicate fits using an analytical model that describes stretching of the
unstructured parts of the construct (handles and unfolded protein), used to determine the size of
the structure that unfolded/refolded and the number of intermediates observed. Neither domain of
the dimer folded natively; instead the dimer misfolded via several intermediates to an aggregated
state (cartoon in panel B). Adapted from Ref. 64.
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was more than twice that for monomers, indi-
cating a structure involving »240 amino acids
(compared to the 104 in the monomer struc-
ture66). The lengths, forces, and patterns of
intermediate states implied that neither domain
within the tandem dimer formed either the
native fold or any of the monomeric misfolded
structures seen previously.59 Instead, a new set
of misfolded structures not seen in monomers
was observed, stabilized by interdomain con-
tacts, i.e. the dimer formed a non-native
aggregate.

These measurements allowed the energy
landscape for PrP aggregation to be measured.
By combining fits to Kramers’ theory of the
rates implied by the observed unfolding forces
to obtain barrier heights and positions48 with
complementary measurements of the free-
energy changes between states, the energy pro-
file for this multi-state process was recon-
structed (Fig. 3). Here the coordinate
representing the degree of folding is the length
change (DLc) between each state, which is
related to the number of residues that are
folded/unfolded. Comparison of the energy
landscapes for dimer misfolding64 and native

folding38 reveals striking differences (Fig. 3).
Dimer misfolding involves several intermedi-
ates, with the last one (ID3) being close in
energy to the fully misfolded state (MD). Con-
version between ID3 and MD is kinetically
restricted, with a rate of only 0.5 s¡1. In this
sense, the measured dimer misfolding land-
scape matches the cartoon notion of aggrega-
tion landscapes (Fig. 1), in that it is more
rugged (contains more intermediates) than the
native landscape and includes a kinetic trap
(ID3). However, contrary to the notion of aggre-
gation involving a heterogeneous mix of meta-
stable states and competing pathways, only one
pathway was ever observed during dimer
misfolding.

Comparing the native and misfolded land-
scapes revealed that the misfolded dimer is
2 kcal/mol more stable than 2 native
monomers. The dimer thus forms the smallest
thermodynamically stable misfolded state of
PrP, given that misfolded forms of monomeric
PrP are not stable.38 Interestingly, this differ-
ential stability (compared to native PrP) is the
same as found from an earlier study of
b-oligomers.28 Although it is very difficult to

FIGURE 3. Comparison of the experimentally measured energy landscapes for native folding, mis-
folding and aggregation of PrP. Native folding is 2-state with no observed intermediates between
the native and unfolded states. In the context of a tandem dimer, the near-barrierless access to the
misfolded ID1 leads the dimer down the misfolding pathway. Several misfolded intermediates are
observed, leading to the final misfolded/aggregated state MD. Inset indicates the additional 3kBT of
roughness over the misfolding transition barriers that slows diffusion along the misfolding pathway
1000 fold compared to the native pathway. Adapted from Refs. 38 and 64.

212 D. R. Dee and M. T. Woodside



deduce secondary structure from SMFS data,
CD spectroscopy of the tandem dimers showed
that they indeed formed extensive b-sheet
structure, raising suggestive parallels to the
earlier work.

DIFFUSION AND ROUGHNESS
IN THE LANDSCAPE

The homogeneous dimer misfolding path-
way appears on the surface quite similar to a
generic, well-funnelled, multistate pathway
leading to a native structure, but the folding
kinetics hint at something different. The fold-
ing rate is 5-fold slower for crossing the first
barrier in the misfolding landscape than for
crossing the native barrier, even though the
initial misfolding barrier is marginal (Fig. 3).
One may wonder, why does misfolding occur
so slowly given that there is essentially no
kinetic barrier? This effect does not reflect the
need first to unfold from a native conformation
before misfolding, since the initial misfolding
transition starts from the unfolded state.
Rather, it reflects the often-underappreciated
fact that the dynamics depend not only on the
barrier height, but also on the intrachain diffu-
sion coefficient, D (Eqn 2). Whereas DGz

influences rates by determining the time
required for a thermal fluctuation of sufficient
magnitude for barrier crossing to occur, D
characterizes the microscopic dynamics of the
protein and thus sets the timescale for how
quickly the protein moves along the landscape.
D is thus a crucial parameter for characterizing
folding, misfolding and aggregation mecha-
nisms. Previous studies have measured D for
peptides and disordered or denatured proteins,
typically finding D »107–108 nm2/s,67-69 but it
has never been possible to compare D for
native folding and misfolding directly and thus
probe the microscopic differences in the
dynamics.

The force-dependent kinetics in the mis-
folding were used to determine D from
Kramers’ theory, using the reconstructed
landscape (Fig. 3). Strikingly, D (103 nm2/s)
was 1000-fold slower than for native folding,

implying that misfolding transitions occur
over a much longer timescale. This hypothe-
sis was tested by holding the dimer at a
force where it fluctuated in equilibrium
between the unfolded state (U) and the first
misfolded intermediate (ID1), allowing the
motions across the barrier to be observed
directly. The time required for each passage
over the barrier, the transit time, was indeed
found to be on average »300 times slower
than for native folding of PrP, consistent
with a much-reduced D for misfolding.

One way to understand the reduction in D
during misfolding is in terms of additional
roughness in the energy landscape surface,
visualised as ‘micro-barriers’ layered over
the large-scale barriers separating the well-
defined states.70 The micro-barriers then
create short-lived local traps that slow down
the motion over the landscape, reducing the
effective diffusion coefficient observed over
larger length scales. Such roughness can be
attributed to ‘internal friction’ in the
protein,71 consisting of processes like non-
native contact formation and dynamics
orthogonal to the reaction path that slow
down the progress to the folded state.72,73

Enhanced internal friction was previously
identified as the cause of 3000-fold differen-
ces in folding rates between homologous
spectrin proteins.34 Analogously, enhanced
internal friction during misfolding likely
explains the reduction in D observed here.
This result also indicates that PrP dimer
misfolding involves a much greater level of
frustration—that is, competition among isoe-
nergetic non-native contacts—and in this
sense also matches the cartoon vision of
aggregation landscapes.

STRUCTURE OF THE MISFOLDED
DIMER

SMFS yields a wealth of information about
the steps during misfolding, but it does not
provide high-resolution structures. Neverthe-
less, it does provide constraints for building
and testing structural models. For example, the
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key intermediate that initiated misfolding, ID1,
was not observed in monomeric PrP,59 indicat-
ing that it must involve interactions between
residues in both domains of the dimer. From
the length change upon unfolding, we estimated
that it consists of »50 amino acids. It thus
almost certainly encompasses the region span-
ning the link between the 2 domains, i.e., the
C-terminal residues of the first domain and the
N-terminal residues of the second domain
(Fig. 2A). Residues 109-122 of PrP are pre-
dicted to have a strong propensity to form
a-helical structure,74 and a structurally-ambiva-
lent “chameleon sequence” capable of forming
different secondary structures depending on the
context provided by neighboring sequences
was identified in residues 114-125,75 suggest-
ing that this region could indeed form the
nucleus for a stable structure in the context of
interactions with the C-terminal residues of a
neighboring domain, despite the fact that it is
unstructured in monomeric PrP. Molecular
dynamics simulations have also shown that N-
terminal residues 90-100 and 110-127 tran-
siently sample b-strand and a-strand conforma-
tions in the monomer,54 supporting the notion
that this region may initiate misfolding. The
unusual a-strand structure has been implicated
as being amyloidogenic,76 and peptides span-
ning PrP residues 106-135 were neurotoxic in
cells.77

Various models for misfolded PrP are avail-
able for comparison with our data on the PrP
dimer. The crystal structure of human PrP(90-
231)78 shows a domain-swapped dimer in
which each monomeric domain is structured as
in monomeric PrPC but helix 3 swaps positions
in the 2 domains. This domain-swapped struc-
ture could, in principle, form in the tandem
dimer, but it is incompatible with the force
spectroscopy results: the stable intermediate
ID1 is formed in part from the residues in the
N-terminus that remain disordered in the crys-
tal structure. A dimeric version of a structural
model proposed for PrPSc based on simula-
tions3 would yield DLc upon unfolding of
»90 nm, somewhat larger than our observed
value (81 § 1nm), whereas a parallel b-sheet
model of PrP amyloid79 would imply DLc
»70 nm for the case of a dimer, somewhat

smaller than observed. In contrast, the observed
DLc is much lower than what would be pre-
dicted by models in which each monomeric
domain is structured from residues 90 to 230,
DLc »100 nm.5,80 The high stability of our
dimers also contrasts with the suggestion of a
partially-denatured dimeric amyloid precursor
existing in an equilibrium with monomeric
PrP.81

Investigating the secondary structure content
of the misfolded dimer, CD spectroscopy
revealed a b-rich structure (11% a-helical, 35%
b-sheet) at both pH 4 and pH 7. The low helical
content is consistent with work showing that
the helical C terminus of PrPC likely converts
fully to b-strands in PrPSc,5 in contrast to ear-
lier models positing the retention of significant
C-terminal helix content.3,4 This interpretation
is also consistent with the results of previous
SM fluorescence studies of PrP aggregation,
which found evidence for the rapid formation
of b-rich dimers as the first step in
aggregation.82

RELEVANCE OF THE MISFOLDED
DIMER TO PRION DISEASE

Dimerization has long been suspected to
play an important role in pathogenic conversion
of PrPC,83 although larger oligomers seem to be
more infectious.84 Recombinant PrP forms
dimers both at low pH85 and upon dilution
from 0.2 to 0.05% SDS,86 while brain-derived
PrP dimerizes in vitro.87 A model for conver-
sion of PrPC to amyloid based on dimeric
domain-swapping has been proposed,88

inspired by the domain-swapped dimer found
in the crystal structure of human PrP.78 Most
interestingly, synthetic PrP dimers were toxic
to neurons both in culture89,90 and in mouse
models of prion disease,90 and antibodies raised
against tandem dimers of PrP showed anti-
prion activity in vivo.91 More recently, it was
found that recombinant PrP could be converted
into a toxic dimer using PMCA.92

Despite the evidence for the relevance of
dimeric states, it is very difficult to ascertain
whether any of the species observed at the sin-
gle-molecule level are in fact related to
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pathogenesis in vivo. Nevertheless, although
any connection to disease is only speculative,
our results show that PrP seems to be uniquely
pre-disposed to conversion into misfolded
structures through intermolecular interactions.
Indeed, even the smallest oligomer, a dimer,
can rapidly and reliably convert to an appar-
ently b-rich form that is more stable than PrPC.
This misfolded structure may well act as a first
step along the aggregation pathway, as reflected
in the fact that the dimer aggregates much more
rapidly than monomeric PrPC.

FUTURE STUDIES

By providing a platform for making direct
comparisons between native folding and aggre-
gation at the single-molecule level, studies like
this one64 represent an exciting new approach
for understanding the microscopic mechanisms
of structural conversion in disease-related pro-
teins. The aggregation of PrP into the misfolded
dimeric state offers a controlled environment
for testing the effects of aggregation-inhibiting
ligands with known anti-prion activity,93 to
investigate in greater detail their mechanism of
action and thereby gain insight into how to
design more effective anti-prion agents, or to
study the action of molecular chaperones in the
context of misfolding diseases.94 Of course to
date only dimers linked between the C and N
termini, which may limit the accessible confor-
mations, have been studied so far. Studying
other link topologies (C-C, N-N) in dimers, to
relax the topological constraints, and exploring
larger oligomers, to see how aggregates change
with size,95 should allow the quantitative pic-
ture of the aggregation landscape to be
extended via comparisons of well-defined sys-
tems. Combining experiments with computa-
tional simulations may also provide insight into
the structures of the misfolded states.96

As a last point, we note that during folding
measurements, proteins spend most of their
time in the low-energy wells of the landscape,
and only a very brief time crossing the barriers
between these wells. Yet critical details of fold-
ing, misfolding and aggregation occur during
these brief transitions. Information about the

barrier crossing events themselves, known as
transition paths, is a key target of current
efforts, because they contain all the information
about the transition states dominating the
dynamics, but transition paths remain very dif-
ficult to study directly.97 Because of the very
slow diffusion during dimer misfolding, we
were able to observe transition paths directly
for the first time, in any molecule.64 Future
transition-path studies hold great promise for
elucidating the mechanistic details of misfold-
ing, both directly from experiment and by com-
paring measured transition path properties to
atomistic simulations.73
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