
Heredity (2018) 121:401–405
https://doi.org/10.1038/s41437-018-0128-4

EDITORIAL

The utility of fitness landscapes and big data for predicting
evolution

J. Arjan G. M. de Visser1 ● Santiago F. Elena 2,3,4
● Inês Fragata 5

● Sebastian Matuszewski 6

Received: 25 June 2018 / Revised: 13 July 2018 / Accepted: 13 July 2018 / Published online: 20 August 2018
© The Author(s) 2018. This article is published with open access

The prospect that we may be able to predict the outcome of
future evolutionary processes has motivated recent investi-
gations of the factors that determine this predictability
(Lässig et al. 2017). At first sight, predicting evolution may
seem an unsurmountable goal, and perhaps even naïve,
given the many stochastic factors involved, prominently
among them environmental change and the origin of new
heritable variants. Yet, the situation is not entirely hopeless,
as we can predict general features of evolution, such as the
dynamics of adaptation resulting from available genetic
variation (Fisher 1930), and the rate of genome evolution in
the absence of selection (Kimura 1968). A particularly
complicating factor, realized long ago by Sewall Wright
(Wright 1932), is that the fitness consequences of mutations

may vary in an unpredictable manner across genetic back-
grounds due to pervasive epistasis. To understand evolu-
tionary processes in the face of epistasis, Wright introduced
the concept of the fitness landscape. In the visually
appealing 3-dimensional version of the fitness landscape,
epistasis introduces mountain ranges with multiple peaks,
each representing an alternative adaptive solution for a
genotype in a particular condition, separated by lower-
fitness regions. In one way, such rugged landscapes prevent
precise evolutionary predictions, since it is impossible to
know towards which of the many peaks evolution will head
off or which mutational pathways may be more likely than
others. However, Weinreich et al. (2006) emphasized that
epistasis also reduces the number of mutational pathways
natural selection will promote, thus enhancing predictability
once evolution has committed to a particular peak (Palmer
et al. 2015). In other words, one may predict the outcome,
but not the specific pathway, when epistasis is weak. When
epistasis is strong (i.e., the landscape highly rugged) it may
be more difficult to predict the outcome, but perhaps the
evolutionary pathway can be predicted once the approx-
imate direction of evolution becomes clearer (Szendro et al.
2013; Bank et al. 2016). This realization motivated many
recent efforts to analyze fitness landscapes empirically, and
to study how their topography directs evolution (de Visser
and Krug 2014).
Characterizing the topography of real fitness landscapes by
analyzing the interactions among a small subset of muta-
tions is one obvious approach to fill in missing information
(de Visser and Krug 2014). Complementary progress comes
from theoretical analyses that have provided new tools to
characterize these landscapes and explore their evolutionary
consequences for varying population-dynamic conditions
(Lobkovsky and Koonin 2012; Szendro et al. 2013; Kon-
drashov and Kondrashov 2015; Ferretti et al. 2016;
Zagorski et al. 2016). Nevertheless, the utility of informa-
tion on fitness landscapes for evolutionary predictions has
so far been limited for several reasons. One reason is that
empirical studies can only analyze tiny parts of the fitness
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landscape, leading to potential biases in the inferred topo-
graphy. For instance, if non-epistatic subsets of mutations
are rare, they will be often missed in small-scale empirical
analyses, while in reality selection may “find” and “use”
them (de Visser and Krug 2014). Another reason is that the
environment may change during evolution, including due to
changes in the evolving organisms themselves. This may
impact the topography of the fitness landscape, and hence
limit forward-looking predictions based on the original set
of conditions (Mustonen and Lässig 2009). Given these
concerns, more promising than predicting specific muta-
tional pathways may be to predict the dynamics of adap-
tation based on global patterns of epistasis, such as the
diminishing returns pattern observed in several organisms
(Kryazhimskiy et al. 2014; Martin 2014; Schoustra et al.
2016). Models that can capture these global patterns and
predict fitness from a few underlying phenotypes, as for
example Fisher’s geometric model (Fisher 1930), may be
useful for predicting phenotypic change (Martin et al. 2007;
Blanquart et al. 2014; Tenaillon 2014; Blanquart and
Bataillon 2016; Hwang et al. 2017). However, despite its
utility to predict general patterns of evolution, Fisher’s
Geometric model is often unable to explain the real
underlying structure of experimental fitness landscapes
(Blanquart and Bataillon 2016), making it difficult to obtain
predictions that can be applied to current societal problems.
In fact, the only studies that have produced predictions with
practical utility so far, such as for influenza vaccine selec-
tion, have used relatively simple fitness models that did not
involve epistasis (Luksza and Lässig 2014; Neher et al.
2016).

This special issue surveys different experimental and
theoretical approaches to study the factors that prevent or
allow us to predict evolution, motivated by a number of
open questions. It originates from the symposium “Fitness
landscapes, big data, and the predictability of evolution”, at
the European Society for Evolutionary Biology meeting
(ESEB XVI) held in August 2017 in Groningen, the
Netherlands. The seven studies include a mixture of
empirical and theoretical work, often combined in the same
study, and together address three global questions: (i) What
do real fitness landscapes look like? (ii) How does land-
scape topography affect evolution? (iii) How do different
mutation classes contribute to evolution? Here we highlight
their contributions to these questions.

What do real fitness landscapes look like?

Of the empirically characterized fitness landscapes that are
presently available, most concern mutations in a single
gene, such as TEM-1 β-lactamase (Weinreich et al. 2006;

Schenk et al. 2013) or heat shock proteins (e.g. Hsp90;
Hietpas et al. 2011), while a minority involves mutations in
different genes for a variety of micro-organisms, which
often have been co-selected in the same genetic back-
ground (Khan et al. 2011; Lalić and Elena 2015). However,
recent methods to systematically generate mutants and
measure their fitness effects in bulk competitions using
deep sequencing (Hietpas et al. 2011) now allow analyses
of landscapes involving many thousands of genotypes
(e.g., Acevedo et al. 2014). Analyses of these empirical
fitness landscapes have already yielded a few general, but
preliminary insights (de Visser and Krug 2014). One gen-
eral finding is that real fitness landscapes are rugged, but
that the level of ruggedness varies substantially across
studies. A few factors have been identified that seem to
underlie this variation by increasing the strength of epis-
tasis. These include the fitness effect of mutations, their
occurrence in the same rather than different genes, and the
fact that the collective effects of the mutations involved
were unknown a priori. These insights will help under-
standing of the variation in topography of the growing
collection of empirical landscapes. Other studies have
explicitly measured landscape topographies under varying
conditions, including for five non-synonymous mutations
in a long-term experiment with Escherichia coli (Flynn
et al. 2013), combinations of a transcription factor and
operator of the lac operon (de Vos et al. 2015), and for
random synonymous and non-synonymous mutations in an
RNA plant virus tested on different host species (Lalić and
Elena 2012; Cervera et al. 2016a). All these studies show
that a plethora of factors can influence the topography of
fitness landscapes.
Interestingly, two studies in this special issue now provide
the first insights that synonymous mutations can also
influence fitness landscape topography. Zwart et al. present
an empirical fitness landscape involving four synonymous
mutations that individually increase the activity of TEM-1
β-lactamase on a novel substrate, the antibiotic cefotaxime.
They show surprisingly strong epistatic interactions among
these mutations, particularly given the relative small effect
of the mutations (refuting the idea that the strength of
epistasis scales with the fitness effect-size of the individual
mutations). Zwart et al. then use their empirical fitness
landscape to show that these synonymous mutations render
their benefit via affecting more than one phenotype. Simi-
larly, for the yeast chaperone Hsp90, Fragata & Matus-
zewski et al. show that the impact of synonymous mutations
on the topography of the fitness landscape is environment
dependent. In addition to finding clear fitness effects of
synonymous mutations, these studies show how analyses of
their interactions may help to identify the mechanisms
responsible.
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How does landscape topography affect
evolution?

Empirical tests of predictions about evolutionary trajectories
or outcomes based on fitness landscape analyses are scarce.
For example, Salverda et al. (2011) tested, and partly con-
firmed, Weinreich et al. (2006) prediction that TEM-1 β-
lactamase adapts to the antibiotic cefotaxime by using a
specific set of four amino-acid substitutions in strict order.
In sharp contrast, Cervera et al. (2016b) observed that
evolving genotypes of tobacco etch potyvirus (TEV) loca-
ted at increasing distances from a local fitness peak did not
recapitulate the expected evolutionary path but explored
other regions of the genotypic landscape. Generally,
deviations from such predictions may have multiple causes,
including contributions of other mutations outside of the
small subset considered for the empirical landscape, and
evolutionary changes in the selective conditions that result
in changes in the topography. These fundamental problems
have been addressed in at least two distinct ways. First,
instead of testing a priori predictions from empirical fitness
landscapes, evolution experiments have been combined
with a posteriori analyses of interactions among common
mutations to test the role of epistatic constraints in directing
the pathways observed. This approach was used to under-
stand the higher evolvability of a low-fitness genotype in a
long-term experiment with E. coli (Woods et al. 2011), and
in another study to understand distinct mutational paths
during yeast evolution to slow and rapid increases of nickel
(Gorter et al. 2018). Gifford et al. now add a study in which
results from evolution and mutation accumulation experi-
ments with bacteria are combined with simulations to
address the relative contribution of standing genetic varia-
tion and de novo mutations to the evolution of antibiotic
resistance at different drug concentrations. Most interest-
ingly, they found that altering the nature of environmental
pleiotropy also alters the relationship between a mutant’s
frequency and its fitness. When fitness values correlate
positively across antibiotic concentrations, selection for the
strongest resistance mutations is reinforced; in contrast,
when uncorrelated effects reduced the strength of selection.
A different approach is to explore, and try to predict, evo-
lution on (empirical or model) fitness landscapes using
theoretical models. This special issue contains three con-
tributions of this kind. McCandlish develops a mathematical
framework for understanding evolution on fitness land-
scapes when mutations are rare. In contrast to standard
assumptions, McCandlish’s approach does not require
selection to be strong and allows deleterious mutations to
become fixed – adding biological realism to these types of
models. The resulting reversible Markov-chain model is
then used to classify parts of the fitness landscape (and the

mutations defining it) by their “mutational” and “dynamic
neighborhoods” – characterizing regions of the fitness
landscape that are easy or rather difficult to reach due to
mutational distance and the presence of a fitness valley.
These two quantities shed surprising light on the structure
of the fitness landscape – particularly where the mutational
and dynamical neighborhood of a genotype are misaligned.

Similarly, Ferretti et al. propose new statistical measures
for quantifying the evolutionary constraints on both theo-
retical and empirical fitness landscapes: the similarity
between accessible paths and the abundance and char-
acteristics of “chains of obligatory mutations”; i.e., paths of
genotypes with only a single beneficial mutation available.
Unlike most conventional measures of epistasis, or land-
scape ruggedness, they tend to be only weakly correlated
with one another, but also with the strength of epistasis.
Interestingly, Ferretti et al. show that the number of “chains
of obligatory mutations” is maximal for intermediately
rugged fitness landscapes, emphasizing that it captures
information about the structure of epistasis, and thus could
represent an evolutionarily meaningful tool to classify and
discriminate between different types of fitness landscapes.

Finally, Passagem-Santos et al. compared the ability of
several phenotype-fitness models to predict adaptive
dynamics, using both simulations and empirical data from
E. coli and Schizosaccharomyces pombe. This study adds to
the growing literature of empirical studies that focus on how
general and simple phenotype-fitness models, such as the
power-law, Fisher’s Geometric Model or the stickbreaking
model (Wiser et al. 2013), can predict long-term adaptation
to a single environment. Interestingly, Passagem-Santos
et al. argue that despite their simplicity, these models can
already capture the patterns of diminishing-returns epistasis.
They allow mimicking of the pattern of decelerating adap-
tion (i.e., as populations approach a fitness optimum,
adaptation proceeds through smaller mutational steps,
Martin et al. 2007, Khan et al. 2011, Draghi and Plotkin
2013), particularly in a constant environment, and suggests
that it is possible to predict general features of adaptation in
laboratory evolution experiments.

How do different mutation classes
contribute to evolution?

An important and elegant prediction from population
genetic theory is that the substitution rate is equal to the
mutation rate, as long as selection is unimportant and
mutations all arise via single mutant individuals (Kimura
1968). The latter implies that mutational bias (i.e., the
variation in frequency at which different mutations arise),
has a major impact on genome evolution. Under selection,
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beneficial mutations will substitute disproportionally as a
function of their fitness benefit, but mutational bias will still
play a role, as small-benefit mutations (that frequently
occur) may substitute before less frequent higher-benefit
mutations (e.g., Cooper et al. 2001). In this issue, Will-
emsen et al. want to better understand one particular source
of mutational bias, genome deletions, by analyzing the
stability of genomic insertions in TEV. They find that the
recombination rate is the best predictor of insertion stability,
as recombination is a dominant mechanism of insert dele-
tions. As described above, Zwart et al. and Fragata &
Matuszewski et al. specifically address the evolutionary
impact of another class of mutations, namely synonymous
mutations. Both studies find significant positive fitness
effects of these mutations, and identify possible underlying
mechanisms explaining these effects: post-transcriptional
positive effects on enzyme levels for the β-lactamase
mutations in E. coli reported by Zwart et al., and residue
position, mRNA stability and codon frequency for the
mutations in Hsp90 of yeast by Fragata & Matuszewski
et al. Together, these studies make a strong case for why the
evolutionary contribution of synonymous mutations and
genome deletions should not be neglected.

Future perspectives

This special issue highlights several remaining open ques-
tions, whose answers may guide future work on evolu-
tionary predictions:

1. To what extent is the fitness landscape concept useful
for understanding and predicting evolution? Do we
need to move away from the present static paradigm
to dynamic landscapes that incorporate environmental
changes (Mustonen and Lässig 2009; Catalán et al.
2017)?

2. Which topological features of fitness landscapes are
most informative to allow evolutionary predictions?
E.g. general features such as average ruggedness,
number of peaks, pervasiveness of higher-order
epistasis, or more local features such as “chains of
obligatory genotypes” (Ferretti et al.)?

3. What models should we build to capture these
topological features? It is clear that full fitness
landscapes cannot be empirically characterized, so
we need models to extrapolate partial empirical data
into full landscapes. Two approaches have been used
so far: (i) bottom-up biophysical models, capturing
real molecular interactions at play (e.g., DNA-
transcription factor binding); and (ii) statistical models
(e.g., Rough Mount Fuji or NK) that describe global
statistical features, such as ruggedness, or peak

number. How informative is each class of models
for evolutionary predictions?
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