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Abstract

Biological organisms must perform computation as they grow, reproduce,
and evolve. Moreover, ever since Landauer’s bound was proposed it has been
known that all computation has some thermodynamic cost – and that the
same computation can be achieved with greater or smaller thermodynamic
cost depending on how it is implemented. Accordingly an important issue
concerning the evolution of life is assessing the thermodynamic efficiency of
the computations performed by organisms. This issue is interesting both
from the perspective of how close life has come to maximally efficient com-
putation (presumably under the pressure of natural selection), and from
the practical perspective of what efficiencies we might hope that engineered
biological computers might achieve, especially in comparison with current
computational systems. Here we show that the computational efficiency of
translation, defined as free energy expended per amino acid operation, out-
performs the best supercomputers by several orders of magnitude, and is
only about an order of magnitude worse than the Landauer bound. How-
ever this efficiency depends strongly on the size and architecture of the cell
in question. In particular, we show that the useful efficiency of an amino
acid operation, defined as the bulk energy per amino acid polymerization,
decreases for increasing bacterial size and converges to the polymerization

1

ar
X

iv
:1

70
6.

05
04

3v
1 

 [
q-

bi
o.

O
T

] 
 1

5 
Ju

n 
20

17



cost of the ribosome. This cost of the largest bacteria does not change in
cells as we progress through the major evolutionary shifts to both single and
multicellular eukaryotes. However, the rates of total computation per unit
mass are nonmonotonic in bacteria with increasing cell size, and also change
across different biological architectures including the shift from unicellular
to multicellular eukaryotes.

1

1 Introduction

At the center of understanding the evolution of life is identifying the constraints
faced by biological systems and how those constraints have varied across evolu-
tionary epochs. For example, a question that often arises in evolutionary theory is
how relevant the contingent constraints faced by modern life are for understanding
early life or even the origin of life. Another example is the question of how organ-
isms cope with the constraints of distinct physical scales — a dependence that by
definition does not change across evolutionary epochs.

The laws of thermodynamics restrict what biological systems can do on all
physical scales and in all evolutionary epochs (e.g. [1, 2, 3, 4]). In addition, all
known living systems perform computations. Accordingly, the deep connection be-
tween computation and the laws of thermodynamics are a fundamental constraint
operating on life across all physical scales and evolutionary epochs [2, 3, 4]. This
implies that by analyzing the thermodynamic properties of biological computation,
and in particular the efficiency of those computations, we may gain insight into
the changing constraints that have governed the evolution of life.

A deeper understanding of the thermodynamics of biological systems may also
help to address a question that pervades almost all of biology: how to quantify the
fitness of organisms in a more nuanced way than by their instantaneous relative re-
production rates. One way to make progress on this question is to understand the
more fundamental processes that govern reproduction rates. In this regard, it is
worth noting that recent research has derived reproduction rates (growth rates) of
organisms from their metabolic power budgets, thus illustrating the deep connec-
tion between energetic efficiency, the cost of organism functions, and reproductive
success (e.g. [66, 8]). Another way to make progress is to analyze other important
organism functionalities in addition to reproduction rate. Here too thermodynam-
ics is vitally important. For example, important organism features such as the
tapering of vascular network structure can be predicted from considerations of

1This article represents a revision from an earlier version originally submitted on January 10,
2017 to the Philosophical Transactions of the Royal Society A.
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minimizing energy dissipation [67, 68]. Clearly then, analyzing biological systems
in terms of their thermodynamic efficiency can provide insight on how to quantify
the fitness of organisms. This approach to defining “fitness’ is analogous to recent
efforts that have defined the concept of “genes” and “functionality” in terms of
chemical computations [69].

In this paper we extend previous work on thermodynamics in biological sys-
tems in several ways. We begin by discussing the surprising ways that the overall
thermodynamic efficiency of different biological architectures, quantified as power
per unit mass, varies across both physical scale and the age of first appearance.
These shifts in overall thermodynamic efficiency provide the backdrop against
which we compare shifts in the computational thermodynamic efficiency within
the cell across biological architectures. First we consider the thermodynamic effi-
ciency of the cellular computation of copying symbolic strings during translation
in a single ribosome. We then consider the useful thermodynamic efficiency of this
computation at the whole cell level, i.e., the total energy rate for all translation,
including protein replacement, divided by the rate of translational done for repli-
cation. This calculation requires consideration of intracellular decay processes and
ribosome and protein scaling. After a consideration of the computation of trans-
lation, we consider the efficiency of both the computation of DNA replication and
of maintaining storage capacity, from the scale of cells up to the biosphere.

2 Power usage across biological scales

In this paper we frequently investigate features of efficiency by using power laws of
the form Y = Y0X

β where Y0 is a normalization constant, β is the scaling exponent,
and X represents the scale of the system. This type of equation makes it easy to
relate behaviors at different scales. For example, if β = 1 then all changes in Y
are simply proportional to changes in X. Similarly, for β 6= 1 the ratio Y/X will
not be constant and will either increase or decrease with increasing X.

Before turning to the thermodynamics of biological computation specifically, it
is useful to consider the scaling of total organismal power usage in order to gain
insight on the bulk thermodynamic efficiency of distinct biological architectures.
This perspective will allow us to separate total power usage from the cost of com-
putational rates within cells, and to distinguish which features are changing (or
not) across the evolution of life.

A surprising feature of life at the multicellular scale is that overall metabolic
rate does not simply scale linearly with total body size. This is traditionally know
as Kleiber’s law [70, 67], expressed as a power law with β ≈ 3/4. This value of
β implies that multicellular life obeys a certain economy of scale: as organisms
grow larger the metabolic rate required to support a unit of mass is decreasing
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Figure 1: a.) The overall power density of various systems in the universe. The
red points and associated red power-law curve are bacteria, the blue points and
curve are unicellular eukaryotes, and the orange is for multicellular eukaryotes,
cyan is modern human society followed by the sun in purple and the milky way
in green. b.) Power density as a function of the age (years before the present) of
first appearance of each system. The data shown are a reanalysis of [7, 8, 71, 72].

and larger mammals support more tissues for the same amount of energy (e.g.
[67]). More recently it has been observed that this scaling relationship is not
preserved across all the taxa of life [7]. In bacteria β is greater than 1 and in
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unicellular eukaryotes the exponent is close to, but slightly smaller than, 1 [7].
These relationships imply fundamentally different scaling behavior for each taxa.
They have also been used to derive interspecific growth trends and the limits for
the smallest possible bacterium and largest unicellular eukaryote [8, 9].

Other work has extended a consideration of power usage from the scales of life to
comparisons with astronomical objects. This work has argued that a characteristic
of the aging universe is the appearance of structures with ever higher power density
(power per unit mass) [71, 72]. (We will return to this specific claim below.)

The scaling relationships mentioned above can also be used to analyze power
density across the epochs of life, since the noted differences in scaling relationships
imply very different power efficiency across each form of life. For example, bacteria
require an increasing amount of power to support a unit of mass with increasing
cell size, but are able to reproduce more quickly as a consequence [7, 8]. More
generally, in the evolution of life power-density first increased with increasing size
(bacteria), then saturated for unicellular eukaryotes, and then decreases with size
for multicellular organisms. It also decreases with size in astronomical systems
such as the sun and milky-way (Figure 1a). The surprising features here are:

1. the opposing power density relationships for bacteria compared with multi-
cellular life;

2. multicellular organisms fall along a power density curve that would fall below
astronomical systems at the same scale implying they would be more efficient
(in the sense of requiring less power density to maintain themselves);

3. human societies are well above the average curve for multicellular organisms
implying a possible inefficiency – humanity is extremely profligate, using
power for more than simple maintenance.

In addition, Figure 1b provides the power density as a function of the estimated
time when each group of systems arose (in the same way done in [71, 72]) and
reveals that the biological groups largely overlap independent of the time of first
appearance. Considering the averages of each group, the surprising feature is that
the evolution of biological architecture first increased and then decreased the power
density as a function of first appearance.

These observations highlight a critical question: how should we interpret power-
density? Phrased informally, should a species be proud or ashamed of its power
density? The answer ultimately comes down to how effectively power density
is converted into functionality. This is a challenging question to address, both
because function is often hard to quantify in terms of increased survival, and
because it varies widely across species. In bacteria, we know that the overall
power usage predicts the appropriate growth rates from a partitioning between
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biosynthesis and repair costs [8]. However it has been previously noted that this
comes at the cost of a lower efficiency of biomass production [7] compared with
unicellular and multicellular eukaryotes. More generally, organisms with a wide
variety of growth rates and biomass production efficiencies exist in nature. This
either highlights very different selective pressures in different environments (e.g.
classic r/K selection theory [13, 12]), or that there are other quantifications of
functionality that are more uniform across diverse species.

The thermodynamics of computation, which we consider in the rest of this
paper, provides a potential starting place for analyzing this issue of function.

3 The Thermodynamics of Computation

In this section we first provide background on the modern understanding of the
thermodynamics of computation, grounded in nonequilibrium statistical physics.
We then discuss the different kinds of computation that take place in biological
systems, clarifying the (very narrow) set of computations that we consider in this
paper.

3.1 Formalizing and generalizing Landauer’s bound

There has been great interest for over a century in the relationship between ther-
modynamics and computation [54, 19, 58, 53, 47, 46, 61, 60, 15, 39, 40, 23,
29, 30, 56, 38]. A breakthrough was made with the semi-formal arguments of
Landauer, Bennett and co-workers that there is a minimal thermodynamic cost
of kT ln[2] required to run a 2-to-1 map like bit-erasure on any physical sys-
tem [35, 36, 37, 14, 15, 16, 17, 41, 43, 52, 49, 24, 30]. A related conclusion was that
a 1-to-2 map can act as a refrigerator rather than a heater, removing heat from the
environment [16, 17, 35, 15]. For example, this occurs in adiabatic demagnetization
of an Ising spin system [35].

More recently, there has been dramatic progress in our formal understanding
of non-equilibrium statistical physics and its relation to information-processing in
general [28, 57, 50, 22, 21, 20, 32, 27, 26, 42, 49, 44, 51, 24, 55, 45, 31, 55]. In
particular, to focus on the specifically computation-based thermodynamic cost of
a process, suppose that at any given time t all states x have the same energy.
It is now known that in this situation the minimal work required to transform a
distribution P0(x) at time 0 to a distribution P1(x) at time 1 is exactly

kT [S(P0)− S(P1)] (1)

where S(.) is Shannon entropy and x lives in a countable space X. This lower
bound on the work is achieved if and only if the process implementing the trans-

6



formation is thermodynamically reversible [31, 42, 41]. This theoretical result is
now being confirmed experimentally [25, 48, 18, 34, 33]. (If the Hamiltonians are
not uniform at both times then the change in expected value of the Hamiltonian
must be added Eq. (1).)

This recent work – and in particular (1) – has fully clarified the early reasoning
of Landauer et al. To see how, suppose that the state space X is binary, P0(x)
is uniform, and P1(x) is a delta function about x = 0. So the transformation is
bit erasure, with a uniform initial distribution of the state of the bit. For this
special case, the bound in (1) giving the minimal work is just kT ln[2], Landauer’s
bound. Note that for a different initial distribution P0(x), the minimal work will
be less than kT ln[2]. More importantly, note that the bound in (1) is achieved
with a thermodynamically reversible process; in general, logical irreversibility and
thermodynamic irreversibility need not imply one another [62]. (Indeed, if we use
a thermodynamically irreversible process to implement the logically irreversible
map from uniform P0(x) to delta function P1(x), then the total work used exceeds
Landauer’s bound of kT ln[2].)

Viewed as a computation, bit erasure has the very special property that its
output (namely the value 0) is independent of its input. Obviously this is not
true for the vast majority of computations that we might wish to implement in
the real world; in almost all computations of interest the output depends crucially
on the input. Moreover, the analyses that have been used to derive (1) implicitly
exploited this feature of bit erasure; they only work for physical processes in which
the output is independent of the input. This restriction means we cannot use those
analyses to analyze more general types of computation.

To rectify this, in [63] a physical process was analyzed that can implement
an arbitrary computation in a thermodynamically reversible way, even a com-
putation whose output depends on its input. (See also [59, 41].) That analysis
established that (1) still applies for arbitrary computations. Importantly, this re-
sult — which we call the generalized Landauer bound — holds even if the
conditional distribution P (x1 | x0) is not a single-valued map. Indeed, that condi-
tional distribution is not directly relevant; only the resultant marginal distribution
P (x1) =

∑
x0
P (x0)P (x1 | x0) arises in the generalized Landauer bound.

3.2 Thermodynamics of Biological Computation

In artificial digital computers, there is no uncertainty about what precise dynamical
process constitutes a “computation”. Things are not so clear-cut with biological
systems however. One natural criterion is to characterize a biological process as
a “computation” if it is reliable, repeatable, and especially if it can clearly be
modeled as a digital operation [73, 59]. We adopt this criterion here, viewing any
system that meets these criteria as performing a “computation”. (At a mininum,

7



Subcellular

• Translation 
• DNA Replication

• Metabolic Network 
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• Chemotaxis

Bacteria

• Chromatin Computation 
• Organelle Regulation

Eukaryote

• Homeostasis of organs 
• Cognition 
• Collective Computation 
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Figure 2: The hierarchies of biological computation ranging from subcellular pro-
cesses to interactions within collections of multicellular organisms. At each level
of biological organization a few examples of the dominant computational processes
are provided. It should be noted that the highest levels of biological computation
integrate the lower levels [64]. For example, while neurons are integrated into
a complicated cognitive process they also contain the string writing processes of
basic protein translation.

we feel that such systems perform “computation” at least as much as does a binary
system undergoing a 2-to-1 map, which ever since Landauer has been viewed as a
canonical model of a computation.)

However even having settled on a clear criterion for what constitutes a biological
computation, there is still a major challenge in accurately identifying and then
counting all the computation operations in a biological system. This is because so
many computational processes operate at so many levels of biological organization
(see, for example, [64, 65] for a review, discussion, and formalism). For example,
simply counting the number of bit operations in the multiple interactions of any
given chemical in a metabolic network is quite difficult, let alone the bit operations
involved in controlling all cellular processes such as uptake rates, chemotaxis, and
metabolic regulation. Similarly, for human cognition it is not only necessary to
consider the input-output operations of each separate neuron, but the “software”
of overall human cognition, which of course involves vast numbers of neurons and
is yet to be fully understood.
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Adopting a broad perspective, we can loosely think of each organism as having
their own biological computational hierarchy, where each level in the hierarchy
contains all of the lower levels of computation, combining them to form unique
higher level computations. For example the bacterial cell contains the basic com-
putations of the ribosome, but also combines the produced proteins to run more
advanced computations at the level of metabolic networks. Similarly, a mammal
contains computations ranging from translation within its individual eukaryotic
cells up to signaling networks coupling those cells, and at a higher level, partic-
ipates in social organization [64, 65]. Thus a full treatment of the energetics of
computation requires not only understanding how power usage varies over different
levels of biological organization (as we addressed above), but understanding the
associated hierarchy of computations straddling those levels. Figure 2 illustrates
this nesting and gives examples of the new types of computation at each level of
biological organization.

A full treatment of this nested computation is a huge task, which will be central
to future work in the emerging field of biological computation [64, 65]. Here we
only present results based on the most conservative counting of the number of bit
operations performed by several of the simplest biological processes, focusing on
translation and replication. These results are meant to provide intuition on the
overall efficiency of the cell, but by no means account for all bit operations in the
cell. In addition, our approach only provides a lower bound on the thermodynamic
expenditures of those processes that we do consider, modeling those processes as
the writing of one-dimensional strings, without considering the additional thermo-
dynamic costs of those processes associated with changes in particle number or
positional entropies.

4 Efficiency of cellular computation

In this section we start by considering the thermodynamic efficiency of translation,
first by analyzing the efficiency of the ribosome as the basic unit for translation,
and then by analyzing the efficiency of translation for replication at the level of
the entire cell, which includes the overhead costs of protein replacement. We
pay particular attention to how these efficiencies vary with the size of the cell,
and therefore across evolutionary scales. We then broaden our scope to consider
other ways of measuring how the amount of computation varies with size. We
conclude by scaling up our analysis to consider the thermodynamic efficiency of
the translational computation performed by the biosphere.

9



4.1 Thermodynamic efficiency of computation of transla-
tion

First, we consider the energetic efficiency of translation, which represents the sim-
ple computation of writing free-floating amino acids into distinct strings. Trans-
lation is a particularly well-defined biological computation because it produces a
repeatable output (the polymerized amino acid chain) from a given input (mRNA)
with a high degree of reliability, which as we argued above qualifies it as a compu-
tation. (It also should be noted that this computation is more complex than the
simple bit erasure considered in analyses of the Landauer bound.)

We have long known that it takes 4 ATP for the ribosome to add an amino
acid to the growing protein chain [75, 4, 5]. There has been much past theoretical
and empirical work on the energetics of translation ranging from arguments of
kinetic proof reading [5] to the ratio of forward and backward reaction rates [2].
However, each of these contexts relies on knowledge of the actual chemical process
of translation either in terms of natural reaction timescales or the free energy
change of certain reactions [5, 2]. Our goal here is to compare translation to
any physical process performing the same abstract operation. It should be noted
though that the expenditure of these 4 ATP is partitioned into two key steps:
charging the tRNA, which requires 2 ATP, and forming the peptide bond between
amino acids which requires another 2 ATP (e.g. [75, 4]). These two chemical
processes are used together to take the amino acids out of solution and bind them
together.

Biological translation is a computation that writes a specific string of length lp
using a 20 letter alphabet. It is achieved with a specific chemical process involving
tRNA, mRNA, amino acids, and the ribosome. We are interested in quantifying
how thermodynamically efficient this chemical process is by comparing its thermo-
dynamic cost to the smallest possible thermodynamic cost that would be incurred
by any physical process that performs the same computation. The generalized
Landauer bound provides us with precisely such a “scale” for assessing the ther-
modynamic efficiency of biological translation compared with all possible processes
performing the same operation.

We can apply Eq. (1) to calculate the minimal free energy required to imple-
ment the many-to-one mapping that transforms a pool of free-floating amino acids
(a bath of a large number of uniformly distributed amino acid abundances) into
the prescribed amino acid sequence of a particular protein. Since there is only one
final state, the final entropy is SF = 0, and if we generalize slightly to a scenario
of C possible amino acids, we get

SI = −
N∑
i=1

pi ln (pi) . (2)
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In particular, if we have a uniform pi, i.e., pi = p = 1/C lp , then there are a total
of N = C lp states, and SI = Np ln (p) = ln

(
1/C lp

)
. In many of the calculations

below C is taken to be 20, the actual number of amino acids, we have left the
value general in some of our formulas so that considerations of a reduced amino
acid pool, although unlikely, could be considered.

Given that the average protein length is l̄p = 325aa (see [9] for a review of
values) for 20 unique amino acids, we have that pi = p = 1/20325 = 1.46× 10−423

where there are 20325 states such that the initial entropy is SI = 20325p ln (p) which
gives the free energy change of kT (SI − 0) = 4.03× 10−18 (J) or 1.24× 10−20 (J/
amino acid). This value provides a minimum for synthesizing a typical protein.
We can also calculate the biological value from the fact that if 4 ATP is required
to add one amino acid to the polymer chain with a standard free energy of 47.7
(kJ/mol) for ATP to ADP, then the efficiency is 1.03×10−16 (J) or 3.17×10−19 (J/
amino acid). This value is about 26 times larger than the generalized Landauer
bound.

It should be noted that the efficiency of the translation system is much closer
to the Landauer bound than estimates for other biological processes. For example,
synapses have been estimated to be 105 to 108 times worse than the Landauer
bound [76].

These results illustrate that translation operates at an astonishingly high ef-
ficiency, even though it is still fairly far away from the Landauer bound. To put
these results in context, it is interesting to note that the best supercomputers
perform a bit operation at roughly 5.27 × 10−13 (J) [77, 78]. In other words, the
cost of computation in supercomputers is about 7 orders of magnitude worse than
the Landauer bound of kT ln (2) = 2.87 × 10−21 (J), which is about 5 orders of
magnitude less efficient than biological translation. Biology is beating our current
engineered computational thermodynamic efficiencies by an astonishing degree.

There are subtleties in defining the set of states of the system undergoing trans-
lation, and therefore the associated changes in entropy. The calculation above of
the change in entropy during string writing is based on the specific situation of an
infinite bath of uniformly distributed amino acids. We note that although this is a
reasonable zeroth-order approximation of the cellular environment, it is an under-
estimate of the thermodynamic efficiency of translation, since only some of the en-
tropic costs of translation have been accounted for. In particular, the entropic cost
to pull amino acids from a three-dimensional bath into a one-dimensional string is
neglected. Thus, there are other entropy accountings that are worth investigating,
including one that begins to approximate the three dimensional problem. Below
we provide a few of these alternatives.

First, consider the case where a particular protein is being written from a pool
of only the exact amino acids (both number and composition) required for that
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protein. In this case the number of distinguishable states is given by

m =
lp!∏C

k=1 (nk!)
(3)

where here C is the number of distinct amino acids used, nk is the number of
amino acid of type k, and

∑C
k=1 nk = lp. The initial entropy is then calculated

using SI = mp ln (p) with p = 1/m. In the case where all amino acids are used
in equal proportion, this alternative would be m = lp!/ [(lp/20)!]20 which, using
the values above, gives a Landauer bound of 3.86 × 10−18. This value is very
close to the bound calculated above for the case of an infinite uniform bath. The
maximal thermodynamic cost in Eq. 3 decreases as the number of amino acid
types employed decreases. The smallest non-zero value is given by employing two
amino acid types with only a single amino acid from one of the types, in which
case m = lp!/ [(lp − 1)!]. This gives a Landauer bound of 2.40 × 10−20 which is
about two orders of magnitude smaller than the original bound above.

As we have mentioned, this process of string writing underestimates the change
in entropy because it does not account for the three-dimensional positional en-
tropies of each amino acid. One way to start to address this challenge, which
still underestimates the positional entropy, is to consider each individual amino
acid as distinguishable from the others regardless of type. Under this condition
m = n!, and the Landauer bound would be 6.46× 10−18 which is about 1.6 times
the original estimate from the uniform bath.

These calculations do not prove that evolutionary fitness is highly dependent
on thermodynamic efficiency; conceivably, the majority of chemical processes that
perform an analogous computation have such an efficiency. Indeed, the specific
energetics of translation are tied to the precise processes operating in the ribosome.
It is at least conceivable that evolution, or an alternate origin of life, could have
found an even more efficient chemical process that operates even closer to the
Landauer bound. Nonetheless, these calculations are at least consistent with the
hypothesis that the evolutionary fitness of cells has been highly dependent on the
thermodynamic efficiency with which they perform the computation of translation.

4.2 Thermodynamic efficiency of useful translation

The calculations in Sec. 4 4.1 do not involve the size of a cell, nor any of cellular
functions beyond the operation of a single ribosome. If we are interested in the
computational efficiency of an entire cell we must consider other features of the
cell as well. In particular, we must consider cellular functions that maintain in-
formation. To do this requires an assessment of the rate of information damage.
Specifically, we need to assess the rate of loss of proteins due to damage.

12



Figure 3: Minimal free energy required for the string writing process of protein
translation, taking a uniform bath of amino acids to a specific protein. The for-
mula for the generalized Landauer bound is given, along with the initial and final
entropies of writing a specific string of length lp (the average length of a protein
in amino acids) from a set of twenty objects (amino acids).

Building on previous efforts which describe the general trends in cellular rates
and composition[8, 9], bacteria provide an ideal case for understanding the trends
in computational efficiency across a range of biological scales. A review of analyses
of this issue can be found in the Methods section. The key result [9] is that the
number of ribosomes required for the cell to be able to divide, Nr, is bound by the
inequality

Nr ≥
l̄pNp

(
φ
µ

+ 1
)

r̄r
µ
− l̄r

(
η
µ

+ 1
) (4)

where both the specific growth rate, µ, and number of proteins, Np have been
shown to scale with overall cell volume, Vc, [7, 8, 9] (please see the Methods section
and [9] for definitions for and values of the constants in Eq. 4). The number of
proteins is given by

Np = P0V
βp
c (5)

where, empirically, βp = 0.70 ± 0.06 [9]. In addition, the cross-species trends in
ribosomes have been shown to follow the lower bound on Nr described above [9],
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and this is the relationship that we use here for all further calculations.
This same approach allows us to quantify the total translational computation

being performed by the cell (defined here as writing the amino acid pool within a
cell to specific protein sequences) as

Tt = rrNr/3 (6)

(measured in amino acids/s; note the division by 3 to convert from base pairs
to amino acids). This is plotted in Figure 4a. The asymptotic behavior for the
largest bacteria is due to the “ribosome catastrophe” [9], the point where the
scaling of growth rate (as determined by metabolic rate [8]) demands a greater
ribosomal capacity than can fit in the cell, or equivalently, the point where cellular
division rate becomes faster than the rate at which a ribosome can replicate even
the ribosomal proteins.

We can build off these previous analyses, to analyze the rate of translation
that is used to replace damaged proteins (measured in amino acid units), Rt =
ηNr l̄r/3 + φNpl̄p/3. Combining with Eq. (6), the fraction of total translation that
is used for such repair is

Rt/Tt =
ηl̄r
rr

+
φl̄p
rr

Np

Nr

. (7)

The dependence of this ratio on cell size provides a perspective on the limits of cell
size. (See Figure 4b.) At the smallest end of life cellular translation is dominated
by the replacement of proteins. This should be compared to previous results which
found that total metabolism is dominated by maintenance processes at the small
end of bacteria [8]. Here we tease apart that earlier result, to show that even
the individual process of translation becomes dominated by maintenance (protein
replacement) at the small end of the scale.

As a complement to analyzing the fraction of translation dedicated to repair, we
can analyze the useful translation, which we define as the accumulated translation
that will eventually allow the cell to divide, Ut = Ṅpl̄p/3 + Ṅr l̄r/3. A convenient
way to quantify the overall energetic efficiency of translation is the ratio of the total
energetic cost of translation relative to the useful translation (J per non-degraded
amino acid),

EtTt/Ut = Et

(
1− ηl̄r

rr
− φl̄p

rr

Np

Nr

)−1

(8)

where Et is the energy to polymerize one amino acid (4 ATP at 47.7 (kJ/mol) of
ATP). In Figure 4c we have plotted this overall efficiency of translation based on
the known scaling of Nr and Np across bacteria. We find that the smallest cells
are over an order of magnitude less energetically efficient than the largest cells
at performing the operation of adding an amino acid to the protein chain. The
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Figure 4: a.) The total translation rate as a function of bacterial cell volume.
The smallest observed bacterial species is indicated with the dotted gray line.
b.) The fraction of translation activity that is dedicated to repairing damaged
proteins. c.) The useful translation cost, defined as the total energy expended
on all translation divided by the number of proteins synthesized for replication
rather than for the repair of damage. The red curve is bacteria, the blue point is
for unicellular eukaryotes, and the orange point is a single mammalian cell. The
black curve is the Landauer bound for translating a protein scaled to a single
amino acid addition, and the gray curve is the known energetic cost per amino
acid for a single ribosome given the ATP costs. The dashed black lines are the
range of Landauer estimates given different accountings of the entropy discussed
in the text. For example, the upper dashed line is the case where every amino acid
is distinguishable. The discrepancy between the red and gray curve at the small
end of bacteria is the result of the high fraction of total translation spent on repair
for the smallest cells as shown in (b).
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largest cells converge to the energetic efficiency of the ribosome itself, which is still
about 26 times larger than the Landauer bound as discussed earlier (Figure 4c).

Another interesting question is how the translational efficiency changes across
diverse biological architectures. We find that the translational efficiency of single-
cell eukaryotes (considering values for yeast; see methods) and single mammalian
cells does not significantly deviate from the efficiency of a single ribosome (Figure
4c) which is also the efficiency of the largest bacteria. Life quickly converges to the
efficiency of the ribosome as cells become larger, and maintains that efficiency at
the cellular level across the diversity of both free-living and multicellular eukary-
otes. It should be noted that a critical feature of both Equation 7 and Equation
8 is the ratio of Np to Nr. In particular, the global cost of useful translation and
the fraction of translation dedicated to repair are minimized by Np/Nr = 0. Our
results show that after a sufficient cell size, life has been able to adjust this ratio
such that the effective translational cost is only negligibly larger than that of the
ribosome. A surprising result here is that while the bulk power consumption of
organisms dramatically shifts across major evolutionary transitions, the unit costs
of translation are held constant once cells reach a sufficiently large size.

4.3 Rates of cellular computation measured in Oklos

So far we have only considered one aspect of the thermodynamic cost of cellular
computation, namely energy spent per amino acid operation, measured either using
the Landauer bound or the efficiency achieved by a single ribosome. However
there are other important metrics for analyzing cellular computation. One that
was recently introduced is the Oklo, defined as number of bit operations per gram
per second [78].

Our analysis above allows us to calculate one component of the number of oklos
expended in cellular computation: the rate of amino acid bit operations per unit of
bacterial mass. We plot this as a function of the overall size of the bacterial species
in Figure 5a. We find a non-monotonic function for bacteria with a minimum in
the mid range of bacterial sizes, and a rapid increase for the largest bacteria due to
the increased number of ribosomes [9]. However, it should be noted that for most
bacterial sizes the Oklos curve is surprisingly flat and ranges within an order of
magnitude. The unicellular eukaryote value from yeast is significantly larger than
that of bacteria of the same size, and is about an order of magnitude larger than
the value for bacteria of average cell size. However, the mammalian cell values
appear to be indistinguishable from the value for a bacterium of average size. In
contrast to the energetic efficiency of translation, which appears to saturate at
the ribosome minimum and be held constant across evolutionary transitions, the
Oklos found within different biological architectures have significant shifts across
diverse life, where unicellular eukaryotes are able to achieve the highest rate of bit
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operations per unit mass.
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Figure 5: a.) The mass specific translation rate of individual cells of different
size in Oklos (here considering amino acids per gram per second). The red curve
is the average cross-species relationship calculated for bacteria, the blue point is
for yeast, and the orange point is a mammalian cell. b.) The total amino acid
operations per second (AAOPS) of all the bacteria in the biosphere as a function
of the average bacterial cell volume. The dashed gray line indicates the smallest
observed bacterial species.

4.4 Translational computation by the biosphere

Known cellular rates of the amount of computation per unit mass have recently
been scaled up to analyze the rate of translational computation performed by the
biosphere [78]. Having done this, one can then divide by total solar flux to calcu-
late the thermodynamic efficiency of translation at the scale of the biosphere [78].
However, given the strong scaling relationships demonstrated both in this paper
and in previous work [7, 8, 9], it is important to note that any such estimates
depend strongly on how we model cell size distributions in different environments.
In addition, we have seen that growth rate plays an important role in determining
the overall computational efficiency of translation, and it should be noted that
large amounts of the biomass on earth is growing at rates close to zero [11]. These
low growth rates will not affect the assessment of the information stored in the
biosphere in DNA [77], but will matter for assessing the overall rates of computa-
tion.

To begin to address these subtleties we have plotted (Figure 5b) the total trans-
lation of bacteria (at maximum growth rate; measured in amino acid operations
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per second “AAOPS”) based on the previous estimate of total bacterial cells in the
biosphere [77]. These results show that the total computation rate of translation
in the biosphere could range over many order of magnitude depending on average
cell size and growth rate (which scales with cell volume in these calculations).
Nonetheless, the estimate of the amount of computation occurring in translation
(measured in AAOPS) greatly exceeds previous estimates of the nucleotide oper-
ations per second, which range between 1024 and 1029 [77, 78]. However, it should
be noted that this estimate is based on the scaling of cells growing at maximum
rate which does not represent most of the Earth’s biomass [11]. Following [78],
and considering the slowest growing bacteria [11] we can calculate an extreme
lower bound on the computational efficiency of the biosphere by assuming that all
usable sunlight is dedicated to the total translation. We find that the biosphere
would have a total of 1.86 × 1030 (AAOPS/biosphere) leading to an efficiency of
3.65×1013 (AAOPS/J of sunlight). This value is close to but exceeds the estimate
of 2× 1012 (bit operations/J of sunlight) from [78] for DNA replication.

4.5 DNA replication efficiency

As noted above, much of the previous work on biological computation has focused
on the process of DNA replication [77, 78]. Accordingly, in parallel to our analysis
of translation, we consider how the total computations and efficiencies of DNA
replication shift across bacteria of different size. In Figure 6a we have plotted
the total nucleotide replication rate for bacterial species of different size (to form
this figure we multiply overall genome size by division rate, each of which fol-
lows a known scaling relationship with cell volume [8, 9]). We find that the rate
of nucleotide copying varies by several orders of magnitude across the range of
bacteria.

Paralleling our calculations of string writing during translation we can use sim-
ilar entropic considerations to estimate the Landauer bound in DNA replication.
For a uniform nucleotide bath, the number of states is m = 4G, where G is the
length of a genome, and the corresponding Landauer bound is 1.86 × 10−14 (J)
for a typical bacterial genome size, which can more meaningfully be converted to
5.74 × 10−21 (J/nucleotide), a value that will not vary with genome size. The
known value of 12 ATP per nucleotide copying in cells gives a value of 9.50×10−19

(J/nucleotide) which is 165 times larger than the Landauer bound. Thus, bacteria
consume about two orders of magnitude more energy than the Landauer bound
for DNA replication.

However, just as we saw with translation, there is a broad range of possibil-
ities for the details of the string writing that affect the associated calculations
of the entropies. This is particularly relevant for DNA replication, where it is
much more likely that the string is written from a pool of nucleotides that ap-
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proximately match the length and composition of the genome. As described ear-
lier, this scenario would give m = G!/ [(G/4)!]4, leading to a Landauer bound
of 5.74 × 10−21 (J/nucleotide), which is indistinguishable from the value above.
For a set of completely distinguishable nucleotides we would have m = G! giv-
ing 5.80 × 10−20 (J/nucleotide) which is an order or magnitude larger than the
other thermodynamic cost estimates for DNA replication. This range of Landauer
bound estimates is shown in Figures 6b-c.
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Figure 6: a.) The total DNA replication rate as a function of bacterial cell
volume. The smallest observed bacterial species is indicated with the gray dotted
line. b.) The DNA replication efficiency compared with the Landauer bound for
copying a single nucleotide. c.) The DNA replication efficiency for open reading
frames considering the total cost of replication. The Landauer bound for copying
a single nucleotide has been scaled up using the average length of a gene.
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4.6 Thermodynamic efficiency of gene replication

While the unit costs of replicating a nucleotide are not changing across cells of
different size, it should be noted that across unicellular bacteria and eukaryotes the
percentage of the genome dedicated to coding regions is decreasing with increasing
genome size [81, 80]. Specifically, it has been shown that a good empirical fit to
the number of open reading frames (ORFs) is given by

ORF (G) = A ln

(
1 +

G

B

)
(9)

where A = 4016±280 ORF, B = 4106±680 kbp and G = cDNA+ncDNA, with
cDNA and ncDNA denoting the coding and non-coding fractions of the genome
[80]. This relationship makes it possible to quantify the cost of replicating a coding
nucleotide relative to the Landauer bound. Figure 6c shows that the total cost
for replicating a gene is increasing as genomes become larger. This result is the
opposite of what we found in protein translation where the smallest and simplest
cells are the least efficient at translation at a whole cell-level because of the high
overhead of protein replacement.

There has been recent interest in understanding how the energetics of single
genes change across the range of life [6, 4, 9, 10]. For example, it has been shown
that the fraction of the total energy budget spent on DNA replication is decreasing
with increasing cell size [4]. However, the results here show that compared with an
absolute unit efficiency, the replication cost for a single nucleotide from a coding
region is increasing. It is possible that the decreasing relative cost of replication
compared to total metabolism as cell size increases allows for this inefficiency. It
has also been proposed that the underlying distribution leading to Equation 9 is
a Benford distribution, and that this gives genomes the following properties: (a)
upon combination of genes the minimal error possible is made (maximum fidelity)
and (b) the information contained in the genes is transferred at the maximum
possible rate (minimizing distortion) [80, 85, 86]. Thus far in this paper we have
analyzed the thermodynamic efficiency of the computational processes, however,
the above connection opens up important future efforts which should focus on
the connection between the thermodynamic efficiency of both computation and
communication within cells.

4.7 DNA computation and storage of the biosphere

In addition to the overall computational rate in DNA replication, another impor-
tant characteristic of naturally occurring DNA computation is the total storage
capacity of DNA, both within a single cell and within the biosphere as a whole.
We find that these values again depend strongly on assumptions about average
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bacterial size. In Figures 6c and 6d we have plotted both the storage of a single
cell and of the total bacterial biomass in the biosphere as a function of cell size.
Each varies over about an order of magnitude. We note that the calculation for the
biosphere would agree with the previous estimate of 1.6 × 1037 (bp) [77] only for
an assumption that most of the biomass in the biosphere is small bacteria. Similar
to our calculation of the amino acid operations per total energy of the biosphere,
above we calculate that there are 2.54× 1029 (nucleotide operations/s/biosphere)
or 4.98 × 1012 (nucleotide operations/J) which agrees well with the independent
estimate from [78].
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Figure 7: a.) The storage capacity of the DNA in a single cell as a function of
total cell size and b.) these same values scaled up to the biosphere.

5 Discussion

Here we have shown that life maintains a roughly constant power usage as a
function of the age of the system’s evolutionary arrival, yet the overall scale and
type of system has strong implications for power usage: bacteria increase in power
usage per unit mass for larger cells, whereas multicellular life has a decreasing
power expenditure per unit mass for larger systems. In fact, multicellular life
would be surprisingly more efficient than astronomical objects if extrapolated to
the same scales.

Despite these shifts across the architectures of life, we find surprising consis-
tency in the efficiency of translation, one of the most universal types of computa-
tion carried out in biological systems. Our analyses show that as bacteria become
larger their overall translational efficiency converges on that of a single ribosome.
In addition, this efficiency is maintained for unicellular eukaryote and mammalian
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cells. Astonishingly, this efficiency is only about an order of magnitude larger
than the Landauer bound, and is an impressive feat of biology as it far exceeds
modern computers. However to properly “calibrate” this efficiency we would need
to know how close to the Landauer bound biology could have gotten using alter-
nate biochemical processes (arrived at via alternative evolutionary histories) to
perform translation. On the other hand, it is important to note that the processes
considered here represent only a fraction of the total computations of the cell. In
the future it will be important to quantify the computational efficiency of vari-
ous levels of biological physiology. These additions should range from metabolic
networks in bacteria, to chromatin computations in unicellular eukaryotes (e.g.
[87]), to the social computations of multicellular mammals [64, 65], where each
new level of hierarchy integrates the computations of the lower levels [64]. In ad-
dition, we note that our calculations underestimate the full computational cost
of translation, since they treat amino acids as one-dimensional strings, ignoring
the computational cost of reducing the three dimensional positional entropy of
amino acids into a single string. Accordingly, they underestimate the thermody-
namic efficiency of biological computation which is already impressively close to
the lower bounds considered here. It should also be noted that ATP are used for
many cellular processes in addition to those considered here. Understanding the
thermodynamic efficiency for these other enzymatic and metabolic processes will
require quantifying the computations being performed, and this represents a major
challenge of future interest for the community.

Furthermore, we have shown how the overall computational efficiency of trans-
lation in the biosphere greatly depends on how much of the total biomass is par-
titioned into organisms of different size. This type of analysis of the biosphere,
similar to previous efforts [77, 78], provides new ways to quantify ecological effi-
ciency. Yet it should be noted that a huge fraction of biomass on earth is par-
titioned into the smallest cells which are the least computationally efficient from
the perspective of translation. This implies that despite the evident efficiency of
the biosphere, it could have been higher, and is clearly not the dominant force for
evolutionary selection in some systems. On the other hand, it may well be that
it is not possible to maintain an entire biosphere without maintaining a level of
diversity that results in lots of organisms with inefficient computation. Under that
hypothesis, it may well be that the biosphere as a whole computes with close to
the maximal possible thermodynamic efficiency.
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6 Methods

6.1 Review of ribosome requirements

Previous analyses have shown that the number of ribosomes can be predicted based
on the overall growth rate of cells and the total protein content [9]. These analyses
were based on the translation and degradation dynamics given by

Ṅr = γ
rrNr

l̄r
− ηNr (10)

Ṅp = (1− γ)
rrNr

l̄p
− φNp (11)

where it has been shown [9] that the partitioning of translation between ribosomal
and non-ribosomal proteins is bounded by

γ ≥ l̄r (ηtd + ln(2))

r̄rtd
(12)

where td = ln(2)/µ is the division time, l̄r is the total length of all ribosomal
proteins in base pairs as a cross-species average, l̄p (bp) is the average length of all
other cellular proteins, r̄r = 63 (amino acids s−1) [79] is the maximum base pair
processing rate of the ribosome, η (s−1) and φ (s−1) are specific degradation rates
for ribosomes and proteins respectively (both taken to be 6.20× 10−5 [9]), µ is the
specific growth rate, and Np is the total number of proteins.

6.2 Parameter values

In Figure 1 the lines represent transformations (division by cell volume) of the
best OLS best fits of metabolic rate against cell volume (compared with the RMA
fits carried out in [7]). The large scatter in the data for unicellular eukaryotes is
due to the fact that the metabolic rate scaling is approximately linear with cell
volume, and thus power density is effectively just the residual values around this
linear scaling relationship.

For the translational efficiency in unicellular eukaryotes we combined values for
yeast and for multicellular eukaryotes we used values for mammalian cells. The
equations for bacteria are general provided that we can accurately estimate the
number of ribosomes and proteins, and the overall time to divide for a given cell
volume. For yeast we use a value of Nr = 1.87× 105 [88], Np = 5× 107 [89], and a
division time of td = 7561.6 (s) [90]. For mammalian cells we used Nr = 1.27×107

[91], Np = 1.70× 105 [92], and a division time of td = 1.71× 105 (s) [93].
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Table 1: Definitions of parameters and constants
Parameter Units Definition
td (s) Division Time
l̄r (bp) Length of all ribosomal proteins
l̄p (bp) The average length a protein
r̄r (bp · s−1) Ribosomal base pair processing rate
η (s−1) Specific ribosome degradation rate
φ (s−1) Specific ribosome degradation rate
µ (s−1) Specific growth rate
Np Total number of proteins
Nr Total number of ribosomes
γ Fraction of translation dedicated to making ribosomes
Vc (m3) Cell volume
Rt (amino acids · s−1) Repair translation
Tt (amino acids · s−1) Total translation
Ut (amino acids · s−1) Useful translation
Et (J · amino acids−1) Energy per amino acid polymerization
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