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Part 3: The Theory of  
The Adaptive Arrow of Time
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with ai and bi positive. There exists a unique rest point z in intS3, which is also
the unique Nash equilibrium of the corresponding game.

Theorem 2 ([Ze80]). The following conditions are equivalent for the rock-scissors-
paper game given by (10):

(a) z is asymptotically stable,
(b) z is globally stable,
(c) detA > 0,
(d) zT Az > 0.

If detA = 0, then all orbits in intSn are closed orbits around z. If detA < 0,
then all orbits in intSn, apart from the rest point z, converge to the boundary;
see Figure 1. More precisely, for x ∈ intSn, the ω-limit (the set of accumulation
points of x(t), for t → +∞) is the heteroclinic cycle consisting of the three saddle
points ei and the three edges which connect them (in the sense that these are orbits
converging to one vertex for t → +∞ and to another for t → −∞). This is the
simplest example showing that NE need not describe the outcome of the replicator
dynamics.
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Figure 1. Replicator dynamics for the rock-scissors-paper game
with payoff matrix (9) with ai = 1 and bi = 0.55.

For n = 4, a complete classification seems out of reach. Examples show that
there exist periodic attractors, and numerical simulations display chaotic attractors.
The problem is equivalent to the classification of three-dimensional Lotka-Volterra
equations. Indeed

Theorem 3 ([Ho81]). The smooth and invertible map from {x ∈ Sn : xn > 0}
onto Rn−1

+ , given by yi = xi
xn

, maps the orbits of the replicator equation (3) onto
the orbits of the Lotka-Volterra equation

(10) ẏi = yi(ri +
∑

j

cijyj),

i = 1, ..., n − 1, where ri = ain − ann and cij = aij − anj.

The theorem allows us to use the large set of results on Lotka-Volterra equa-
tions, which are a basic model in mathematical ecology. On the other hand, an
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adaptation is an optimization dynamics

 transferring information
 from the environment into the agent 

- reducing uncertainty about states of the world

= H(Y )�H(Y |X)

I(X;Y ) = H(X) +H(Y )�H(X,Y )

Krakauer & Rockmore - 2016
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