Chemical Configurations: Proteins and DNA

Sarah Maurer Central Connecticut State University Department of Chemistry and Biochemistry

Prebiotic mixture of chemicals

Table 1. Yields (based on carbon) of products following passage of a spark discharge through a mixture of CH_4 , NH_3 , H_2O , and H_2 (total yield: 15.2% [22]).

Compound	Yield (%)	Compound	Yield (%)
Formic acid	4.0	α-Hydroxybutyric acid	0.34
Glycine	2.1	Succinic acid	0.27
Glycolic acid	1.9	Sarcosine	0.25
Alanine	1.7	Iminoacetic-propionic acid	0.13
Lactic acid	1.6	N-Methylalanine	0.07
α -Alanine	0.76	Glutamic acid	0.051
Propionic acid	0.66	N-Methyl urea	0.051
Acetic acid	0.51	Urea	0.034
Iminodiacetic acid	0.37	Aspartic acid	0.024
α-Amino- <i>n</i> - butyric acid	0.34	α-Aminoisobutyric acid	0.007

Podlech, J. (2001). Origin of organic molecules and biomolecular homochirality. *Cellular and Molecular Life Sciences*, *58*(1), 44–60.

Chirality

L-amino acids – enriched by meteorites

Table 2. Enantiomeric distributions of the *Allo* isoleucine and isoleucine diastereomers in selected CR2 meteorites

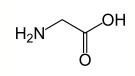
	LAP*	EET	MET	PCA	QUE	MIL	GRA1*
lle L-ee	3.6	26 ⁺	50	19	50 [†]	46 †	14.0
Alloile D-ee	2.2	21	60	19	34.5	18	12.1
<i>Allo</i> /ile	1.4	1.8 ⁺	2.2	2.0	1.1 ⁺	1.4 [†]	2.3

*From ref. 3.

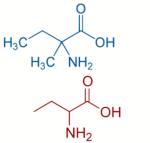
[†]Shows L-proteinogenic amino acid excesses in the extracts, could be in part contaminant and ile/allo ratios were estimated from L-allo/D-ile.

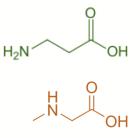
D - sugars (also in nucleotides) – enriched by L - amino acids

Pizzarello, S., Schrader, D. L., Monroe, A. A., & Lauretta, D. S. (2012). Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. *PNAS*, *109*(30), 11949–11954. https://doi.org/10.1073/pnas.1204865109


Amino acids

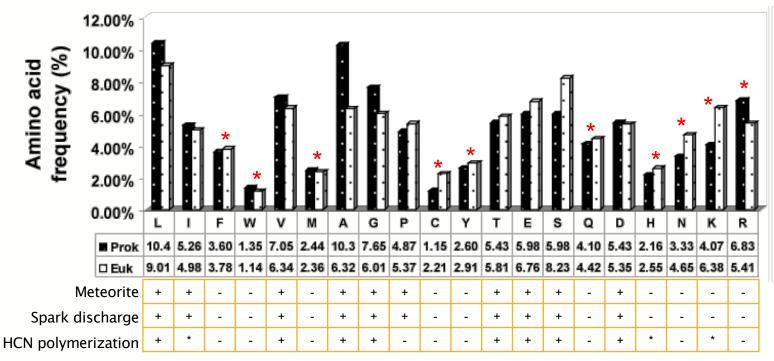
Biological	Alternatives
Amino acid	hydroxy acids, thio acids, amino sulfonic- or amino phosphinic acids
Residues at the alpha carbon	β -, γ -, or δ -amino acids, or other dervatives
20 exactly	More or less than 20
Our specific set of 20	Other amino acids that were available prebiotically


Constraints on origin of amino acids:


- Prebiotic availability
- Metabolic accessibility/compatibility
- Evolutionary history/functional utility

Prebiotic amino acids

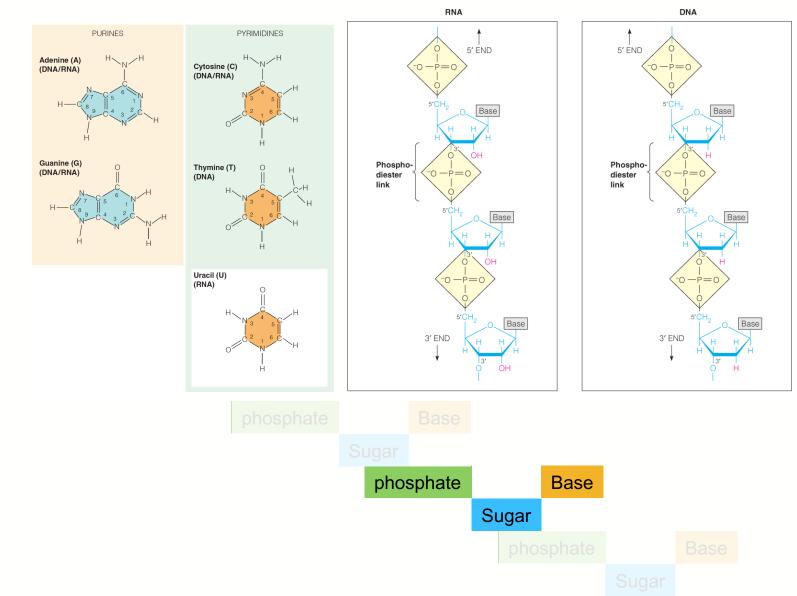
Standard
Dialkyl-amino acid
β- γ- substituted
Non-standard
Amino substituted



Amino acid	Murchison	Spark discharge
DGlycine	++++	++++
Alanine	++++	++++
∎α-Amino-n-butyric acid	++++	++++
) α-Aminoisobutyric acid	++++	++
Valine	++++	++
Norvaline	+++	+++
Isovaline	++	++
Proline	+++	+
Pipecolic acid	+	< +
Aspartic acid	++++	+++
Glutamic acid	+++	++
β-Alanine	++	++
β-Amino-n-butyric acid	+	+
β-Aminoisobutyric acid	+	+
γ-Aminobutyric acid	+	++
Sarcosine	++	++++
N-Ethylglycine	++	++++
N-Methylalanine	++	++

Cleaves, H. J. (2010). The origin of the biologically coded amino acids. *J. Theor. Biol.*, *263*(4), 490–498. https://doi.org/http://dx.doi.org/10.1016/j.jtbi.2009.12.014

Reduced alphabet



+ Detected with high confidence, * detected with low confidence, - not detected.

More complex amino acids were likely selected based on other criteria (not prebiotic availability), possibly with later adaptation into biochemistry

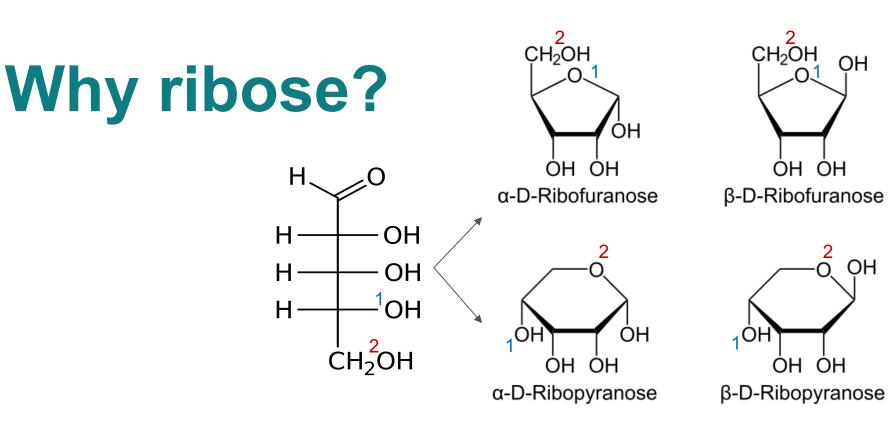
- Sulfur containing
- Aromatics
- Nitrogen containing

Nucleic acid structure

Natu	ral
xNA	NH ₂ 7N 5 9 N 4 N 3 Adenine

TABLE	1.	Modified	DNA	bases

R	896	Structure of substituent	Organism	Percentage replacement of standard base	References
	-Methylcytosine	CH ₃	higher eukaryotes	5-30%	48, 80
Č	Mempleytoonie	03	Xanthomonas oryzae phage XP12	100%	81
			Other phages (e.g., $\phi X174$)	0.2-0.5%	80. 82
			Dinoflagellates	2-17%	60
					59
			Chlamydomonas	0.7%	
			Fungi	1–5%	Reviewed in 53
			Bacteria	0.3–2%	Reviewed in 80
N	⁶ -Methyladenine	CH ₃	Tetrahymena and other ciliates	0.8–2.5%	49; reviewed in 5
			Dinoflagellates	10%	60
			Chlamydomonas	0.5%	59
			Bacteria	0.3-3%	Reviewed in 80
			Phages (e.g., T ₂ , T ₄)	0.5–2%	80, 83
	-Hydroxymethylcytosine nexosylated)	CH₂OR	Escherichia coli phages T ₂ , T ₄ , T ₆	$R_1 + R_2 + R_3 + R_4 = 100\%$	8, 15
		R ₁ : H			
		R ₂ : α-glucose			
		R_3 : β -glucose R_4 : β -glucose- α -glucose			
5	-Hydroxymethyluracil	CH₂OH	Bacillus subtilis phages SP8, ¢e, SPO1, H1, SP82G, 2C, ¢25	100%	16; reviewed in 2
			Dinoflagellates	12-68%	50, 60
U	racil	_	B. subtilis phage PBS2	100%	84
α	-Putrescinylthymine	NH(CH ₂) ₄ NH ₂	Pseudomonas acidovorans phage ϕ W14	50%	13
	ugar-substituted -dihydroxypentyluracil	CH ₂ (CH ₂) ₂ CHORCH ₂ OR R: glucose ^a	B. subtilis phage SP15	62%	9, 31
J	-uniyuloxypeniylulaen	R: glucuronolactone-1- phosphate ^a			
a	-Glutamylthymine	соон	B. subtilis phage SP10	15–20%	See ref 1
		NHCH			
		(CH ₂) ₂			
		СООН			
~	March 1	CU		19	05
1	-Methylguanine	CH ₃	Shigella sonnei phage DDVI	1%	85
2	-Aminoadenine	NH ₂	S. elongatus phage S-2L	100%	20
N	⁶ -carbamoylmethyladenine	CH ₂ CONH ₂	E. coli phage Mu	15%	17
	4-methylcytosine	CH ₃	bacteria	0.5-2%	86, 87
	lexosylated -hydroxycytosine	OR	Rhizobium phage RL38JI	100%	10
Э	-nyaroxycytosine	R_1 : (D-gal)-1-α-D-glc-6→			
		I-α-D-glc			
		R ₂ : (D-gal)-1-α-D-glc R ₃ : D-gal			
	-D-glucosyl- ydroxymethyluracil	CH₂OR	Trypanosoma brucei	0.4%	51
	Jarozjincinjinacii				


Modification of expression

- Timing replication
- Controlling DNA transposition

Guanine

- Protect from host degradation
- Regulation of repair

* It has not been established yet whether glucose is attached to the 4' position and glucuronolactone-1-phosphate to the 5' position or vice versa.

Table 1. Populations of	f Different Forms of Aldopentoses in
Aqueous Solution ⁴⁰	

	pyra	nose	fura	nose
	α -form (%)	β -form (%)	lpha-form (%)	β -form (%)
D-ribose	21.5	58.5	6.5	13.5
D-xylose	36.5	63.0	0	0
D-arabinose	60.0	35.5	2.5	2

Wei, C. Y., & Pohorille, A. (2009). Permeation of Membranes by Ribose and Its Diastereomers. *JACS*, *131*(29), 10237–10245.

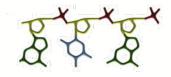
Why ribose?

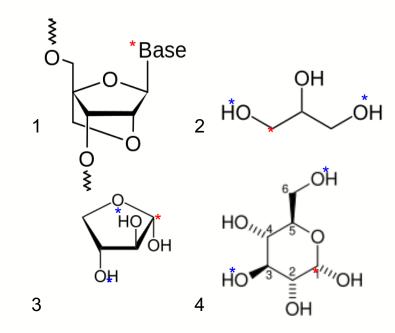
Carbons	
3	Glycerol §
4	Erythritol [§]
4	DL- Threitol
	Adonitol
5	Arabitol
	Xylitol
c	Dulcitol
6	Mannitol
7	Sorbitol
	Arabinose
	Lyxose
-	Ribose
J	d-Xylose
	∟-Xylose
	Ribulose
	Galactose
	Glucose [§]
G	
6	Mannose
6	Mannose Fructose [§]

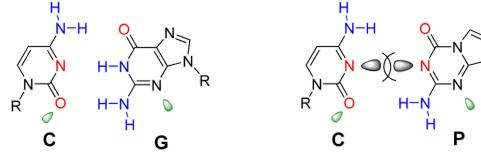
Alternative Sugars

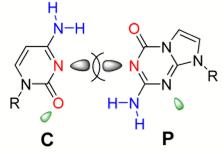
YNDIXIDU

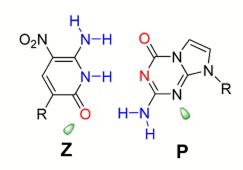
(HNA) Poly-P-Hexose

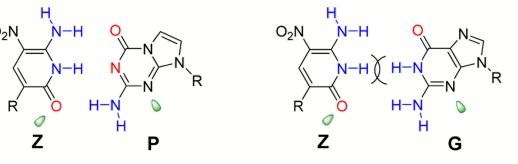


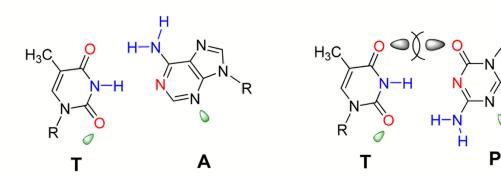

(GNA) Poly-P-Glycol

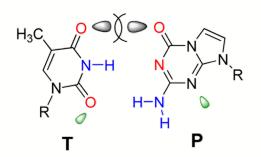


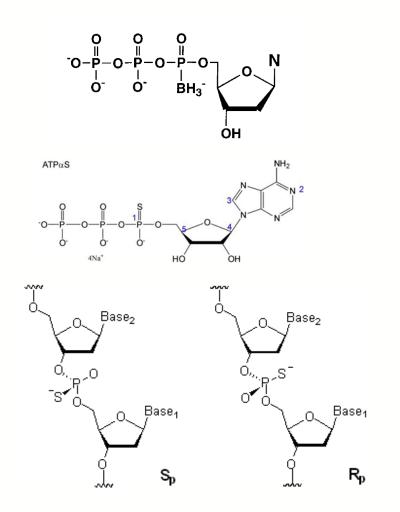



Sugar subsitution:

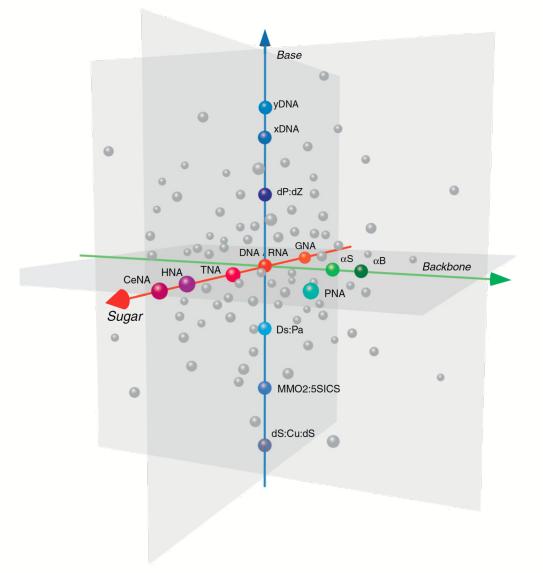

- 1. Locked NA
- 2. Glycerol NA
- 3. Threose NA
- 4. Hexose NA


Expanding the genetic code





Phosphate modification


Oxygen-substitution generates chirality

- Boron
- Sulfur
- Selenium
- Hydrogen

Improves stability in vivo

Possible modifications

How did life choose?

Prebiotic selection:

Availability Stability of monomers Stability of polymers <u>Biotic selection:</u> Cost of biosynthesis Increased functionality

Would it choose these twice?