Systematics and Limits to Metabolic Rates

Chris Kempes

Which aspects of extant life are general and which are arbitrary?

- Which aspects of extant life are general and which are arbitrary?
- What can be said about encapsulation in general?

Metabolism in "Cells"

Metabolism in "Cells"

$\frac{\partial C}{\partial t} = D \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C}{\partial r} \right)$

 $\frac{\partial C}{\partial t} = D \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C}{\partial r} \right)$

Steady State:

$$\frac{\partial C}{\partial t} = 0$$

$$\frac{\partial C}{\partial t} = D \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C}{\partial r} \right)$$

Steady State:

$$\frac{\partial C}{\partial t} = 0 \qquad \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C}{\partial r} \right) = 0$$

Diffusion Equation Steady State: $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C}{\partial r} \right) = 0$

Diffusion Equation Steady State: $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C}{\partial r} \right) = 0$ $r^2 \frac{\partial C}{\partial r} = A$

Diffusion Equation Steady State: $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C}{\partial r} \right) = 0$

Diffusion Equation Steady State: $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial C}{\partial r} \right) = 0$

 $C = B - \frac{A}{r}$

Diffusion Equation $C = B - \frac{A}{r}$

 $r = \infty$ $C = C_{\infty}$ $B = C_{\infty}$

 $C = C_{\infty} - \frac{A}{r}$

C = B - - - A

 γ

AC = B $r = \infty$ γ $C = C_{\infty}$ $B = C_{\infty}$ $C = C_{\infty} - \frac{A}{r}$ r = aC = 0 $A = C_{\infty}a$

C = B - - - A $r = \infty$ $C = C_{\infty}$ $B = C_{\infty}$ $C = C_{\infty} - \frac{A}{m}$ r = aC = 0 $A = C_{\infty}a$ $C = C_{\infty} \left(1 - \frac{a}{r} \right)$

 $C = C_{\infty} \left(1 - \frac{a}{r} \right)$

 $J = DC_{\infty} \frac{a}{r^2}$

Total Flux:

 $J4\pi a^2$

Total Flux:

 $J4\pi a^2$

 $4\pi DaC_{\infty}$