Early Metabolisms: Energetics

Sarah Maurer

Central Connecticut State University Department of Chemistry and Biochemistry

Classification of energy generation in organisms

Evolution of Metabolism

succinate (mitochondria)

Electron acceptor: O2

Electron donor: H₂O

Electron acceptor: NADP

Costa, K. C.; Leigh, J. A. Metabolic Versatility in Methanogens. *Curr. Opin. Biotechnol.* **2014**, 29 (1), 70–75.

Costa, K. C.; Leigh, J. A. Metabolic Versatility in Methanogens. *Curr. Opin. Biotechnol.* **2014**, 29 (1), 70–75.

Costa, K. C.; Leigh, J. A. Metabolic Versatility in Methanogens. *Curr. Opin. Biotechnol.* **2014**, 29 (1), 70–75.

Costa, K. C.; Leigh, J. A. Metabolic Versatility in Methanogens. *Curr. Opin. Biotechnol.* **2014**, 29 (1), 70–75.

Costa, K. C.; Leigh, J. A. Metabolic Versatility in Methanogens. *Curr. Opin. Biotechnol.* **2014**, 29 (1), 70–75.

Costa, K. C.; Leigh, J. A. Metabolic Versatility in Methanogens. *Curr. Opin. Biotechnol.* **2014**, 29 (1), 70–75.

Costa, K. C.; Leigh, J. A. Metabolic Versatility in Methanogens. *Curr. Opin. Biotechnol.* **2014**, 29 (1), 70–75.

Costa, K. C.; Leigh, J. A. Metabolic Versatility in Methanogens. *Curr. Opin. Biotechnol.* **2014**, 29 (1), 70–75.

Carbon fixation on minerals

Modern Redox Chemistry

CO.

FeS

Primordial Redox Chemistry?

$$\begin{array}{ll} \text{H}_2 \rightarrow 2\text{H}^+ + 2\text{e}^- & \text{Loses electrons oxidized,} \\ \text{FeS} + \text{H}_2\text{S} \rightarrow \text{FeS}_2 + \text{H}_2 & \text{(LEO GER)} \\ \\ 4\text{H}_2 + \text{CO}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \\ \\ 4\text{H}_2 + 2\text{HCO}_3^- + \text{H}^+ \rightarrow \text{CH}_3\text{COO}^- + 2\text{H}_2\text{O} \\ \\ \text{H}_2 + \text{Fd}_{\text{ox}} \rightarrow \text{Fd}_{\text{red}}^{2-} + 2\text{H}^+ \end{array}$$

FeS

CO, H

