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1. To compute the information theoretic quantities, we first compute the marginal 

and joint probabilities using the data in the CSV file. 
 
In terms of marginal probabilities, out of 31 days:  
There were 18 days when it was hot, so P(X=xhot) = 18/31 and P(X=xnot-hot) = 13/31. 
There were 12 days when it was rainy, so P(Y=yrain) = 12/31 and P(Y=yno-rain) = 
19/31. 
(August is the monsoon season in Santa Fe, NM, so it is actually the rainiest time 
of the year). 
 
In terms of joint probabilities, out of 31 days: 
There were 7 days when it was both hot and rainy, so P(X=xhot, Y=yrain) = 7/31. 
There were 11 days when it was hot and not rainy, so P(X=xhot, Y=yno-rain) = 11/31. 
There were 5 days when it was not hot and not rainy, so P(X=xnot-hot, Y=yno-rain) = 
5/31. 
There were 8 days when it was not hot and rainy, so P(X=xnot-hot, Y=yrain) = 8/31. 
 
Finally, we are ready to compute our information theoretic quantities. The 
information in X and Y are respectively: 
I(X) = -(18/31) log2 (18/31) - (13/31) log2 (13/31) ≈ 0.981 bits 
I(Y) = -(12/31) log2 (12/31) - (19/31) log2 (19/31) ≈ 0.963 bits 
 
The joint information: 
I(XY) =  -(7/31) log2 (7/31) - (11/31) log2 (11/31)  - (5/31) log2 (5/31) - (8/31) log2 
(8/31) ≈ 1.944 bits 
 
The conditional information quantities are 
I(X|Y) = I(XY) - I(Y) ≈ 1.944 - 0.963 = 0.981 bits 
I(Y|X) = I(XY) - I(X) ≈ 1.944 - 0.981 = 0.963 bits 
 
The mutual information is 
I(X:Y) = I(X) + I(Y) - I(XY)  ≈ 0.98 + 0.96 - 1.94 = 0 bits 
 
 

Let X indicate the state of the two binary inputs, and Y indicate the binary output.  There 
are four possible input values: X=(0,0), X=(0,1), X=(1,0), and X=(1,1), which we assume 
are distributed uniformly. 
 
Our goal is to calculate the mutual information between X and Y. We use the formula 
I(X:Y) = I(X) + I(Y) - I(XY). 



 
I(X) is the information in the inputs.  Since there are 4 possible input values, and they 
are uniformly distributed, we can compute 
I(X) =  -(1/4) log2 (1/4) -(1/4) log2 (1/4) -(1/4) log2 (1/4) -(1/4) log2 (1/4) = 2 bits 
 
I(XY) is the joint information in the input and output values.  To calculate these, we need 
to compute the joint probabilities.  Since Y is equal to 1 only when X=(1,1), and is 0 
otherwise, we can write 
P(X=(0,0), Y=0) = 1/4 
P(X=(0,0), Y=1) = 0 (remember, it is only possible for Y to equal 1 when X=(1,1))  
P(X=(0,1), Y=0) = 1/4 
P(X=(0,1), Y=1) = 0 
P(X=(1,0), Y=0) = 1/4 
P(X=(1,0), Y=1) = 0 
P(X=(1,1), Y=0) = 0 
P(X=(1,1), Y=1) = 1/4  
The joint information is then  
I(XY) = -(1/4) log2 (1/4) -(1/4) log2 (1/4) - (1/4) log2 (1/4) - (1/4) log2 (1/4) = 2 bits 
(for simplicity, here we have dropped terms involved 0 probabilities from the calculation.) 
 
Finally, we compute the marginal probabilities of Y, 
P(Y=0) = P(X=(0,0), Y=0) + P(X=(1,0), Y=0) + P(X=(0,1), Y=0) + P(X=(1,1), Y=0) = 3/4 
P(Y=1) = P(X=(0,0), Y=1) + P(X=(1,0), Y=1) + P(X=(0,1), Y=1) + P(X=(1,1), Y=1) = 1/4 
This gives the information in Y as 
I(Y) = -(3/4) log2 (3/4) -(1/4) log2 (1/4) ≈ 0.81 
 
Combining gives 
I(X:Y) = I(X) + I(Y) - I(XY) = 2 + 0.81 - 2 = 0.81 
	


