
CMSC 451: Maximum Bipartite Matching

Slides By: Carl Kingsford

Department of Computer Science

University of Maryland, College Park

Based on Section 7.5 of Algorithm Design by Kleinberg & Tardos.

Network Flows

s

u

v

t

x

w

20

10

30
20

5

30

10

20

10

10

5

15

15

5

10

The network flow problem is itself interesting.

But even more interesting is how you can use it to solve many
problems that don’t involve flows or even networks.

Bipartite Graphs

• Suppose we have a set of
people L and set of jobs R.

• Each person can do only
some of the jobs.

• Can model this as a
bipartite graph →

u

x

L R

People Tasks

Person u can do task x

Bipartite Matching

• A matching gives an
assignment of people to
tasks.

• Want to get as many tasks
done as possible.

• So, want a maximum
matching: one that
contains as many edges as
possible.

• (This one is not maximum.)

a

b

c

d

e

1

2

3

4

5

L R

People Tasks

Maximum Bipartite Matching

Maximum Bipartite Matching

Given a bipartite graph G = (A ∪ B, E), find an S ⊆ A× B that is
a matching and is as large as possible.

Notes:

• We’re given A and B so we don’t have to find them.

• S is a perfect matching if every vertex is matched.

• Maximum is not the same as maximal: greedy will get to
maximal.

Reduce

• Given an instance of
bipartite matching,

• Create an instance of
network flow.

• Where the solution to the
network flow problem can
easily be used to find the
solution to the bipartite
matching.

Instance of Maximum
Bipartite Matching

Instance of Network
Flow

transform,
aka reduce

Reducing Bipartite Matching to Net Flow

a

b

c

d

e

1

2

3

4

5

L R

People Tasks

Reducing Bipartite Matching to Net Flow

a

b

c

d

e

1

2

3

4

5

L R

People Tasks

Reducing Bipartite Matching to Net Flow

a

b

c

d

e

1

2

3

4

5

L R

People Tasks

s
t

Reducing Bipartite Matching to Net Flow

a

b

c

d

e

1

2

3

4

5

L R

People Tasks

s
t

1
1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

Using Net Flow to Solve Bipartite Matching

To Recap:

1 Given bipartite graph G = (A ∪ B, E), direct
the edges from A to B.

2 Add new vertices s and t.

3 Add an edge from s to every vertex in A.

4 Add an edge from every vertex in B to t.

5 Make all the capacities 1.

6 Solve maximum network flow problem on this new graph G ′.

The edges used in the maximum network flow will
correspond to the largest possible matching!

Analysis, Notes

• Because the capacities are integers, our flow will be integral.

• Because the capacities are all 1, we will either:
• use an edge completely (sending 1 unit of flow) or
• not use an edge at all.

• Let M be the set of edges going from A to B that we
use.

• We will show that

1 M is a matching
2 M is the largest possible matching

M is a matching

We can choose at most one edge leaving any node in A.
We can choose at most one edge entering any node in B.

a

b

c

d

e

1

2

3

4

5

L R

People Tasks

s
t

1
1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

If we chose more
than 1, we couldn’t
have balanced flow.

Correspondence between flows and matchings

• If there is a matching
of k edges, there is a
flow f of value k.

• f has 1 unit of
flow across each of
the k edges.

• ≤ 1 unit leaves &
enters each node
(except s, t)

• If there is a flow f of
value k , there is a
matching with k
edges.

a

b

c

d

e

1

2

3

4

5A

B

s t

v(f) = fout(A) - fin(A)

Correspondence between flows and matchings

• If there is a matching
of k edges, there is a
flow f of value k.

• f has 1 unit of
flow across each of
the k edges.

• ≤ 1 unit leaves &
enters each node
(except s, t)

• If there is a flow f of
value k , there is a
matching with k
edges.

a

b

c

d

e

1

2

3

4

5A

B

s t

v(f) = fout(A) - fin(A)

M is as large as possible

• We find the maximum flow f (say with k edges).

• This corresponds to a matching M of k edges.

• If there were a matching with > k edges, we would have found
a flow with value > k , contradicting that f was maximum.

• Hence, M is maximum.

Running Time

• How long does it take to solve the network flow problem on
G ′?

• The running time of Ford-Fulkerson is O(m′C) where m′ is
the number of edges, and C =

∑
e leaving s ce .

• C = |A| = n.

• The number of edges in G ′ is equal to number of edges in G
(m) plus 2n.

• So, running time is O((m + 2n)n) = (mn + n2) = O(mn)

Theorem

We can find maximum bipartite matching in O(mn) time.

Summary: Bipartite Matching

• Fold-Fulkerson can find a
maximum matching in a
bipartite graph in O(mn)
time.

• We do this by reducing the
problem of maximum
bipartite matching to
network flow.

Instance of Maximum
Bipartite Matching

Instance of Network
Flow

transform,
aka reduce

