
10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 1/16

The Little AVL Tree That Could
Vaidehi Joshi Follow

Aug 15, 2017 · 13 min read

The little AVL tree that could! (self-balance, that is)

he more and more that I learn about computer science, the more and more I am

convinced that my favorite thing about this field is the fact that everything is

built upon much smaller pieces, that all work together. As we’ve learned over the

course of this series, this applies to data structures and algorithms. Queues and stacks

are built upon the building blocks of linked lists. Heaps are built upon much simpler

tree structures. And trees are constructed upon the foundations of graphs and graph

theory.

But it turns out that this also applies to the history of computer science, as well. If we

start to look at the chronology of different structures, algorithms, and concepts within

T

https://medium.com/@vaidehijoshi?source=post_page-----86a3cae410c7--------------------------------
https://medium.com/@vaidehijoshi?source=post_page-----86a3cae410c7--------------------------------
https://medium.com/m/signin?actionUrl=%2F_%2Fapi%2Fsubscriptions%2Fnewsletters%2F4b0dfdcf4c82&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fbasecs%2Fthe-little-avl-tree-that-could-86a3cae410c7&newsletterV3=8f55993c973e&newsletterV3Id=4b0dfdcf4c82&user=Vaidehi%20Joshi&userId=8f55993c973e&source=post_page-----86a3cae410c7---------------------subscribe_user-----------
https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7?source=post_page-----86a3cae410c7--------------------------------
https://medium.com/basecs/to-queue-or-not-to-queue-2653bcde5b04
https://medium.com/basecs/stacks-and-overflows-dbcf7854dc67
https://medium.com/basecs/whats-a-linked-list-anyway-part-1-d8b7e6508b9d
https://medium.com/basecs/learning-to-love-heaps-cef2b273a238
https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 2/16

the history of computing, we’ll start to notice that the more recent discoveries and

creations are tweaks and adjustments on structures that we have already learned

about.

Now, while I am no historian, this leads me to conclude that even the most recent

“inventions” in the field of computing and computer science are “invented upon”

concepts that already existed. In other words, they are ideas that are constructed upon

much smaller pieces; ideas which have been cobbled together and built upon ideas that

were created by someone else in the field prior.

Perhaps the best example of this pattern is the concept of height-balancing trees. The

idea behind a height-balanced trees is really just an extension on the more

foundational idea behind trees and binary search trees, which we already learned

about earlier in this series. It builds upon those core data structures in order to create

structures that are entirely new! We’re going to look at the earliest version of the

height-balanced tree concept. In fact, we’ll learn about the very first height-balanced

tree to ever be invented: the AVL tree.

Making the case for smartypants trees
As it turns out, the history behind the AVL tree is hidden right in its name. AVL trees

were invented by (and subsequently named for) Georgy Adelson-Velsky and Evgenii

Landis, by two Soviet inventors. These structures are fairly recent creations; Adelson-

Velsky and Landis first introduced the idea behind them in 1962, in a paper the pair co-

authored and published called, “An algorithm for the organization of information”.

The idea behind AVL trees is simpler than it might appear at first. However, in order to

understand the idea behind these structures, it’s important to comprehend why on

earth they were invented in the first place!

We know that AVL trees are based on the foundation of the standard tree structure, so

let’s go back to the basics for a moment. When we were first learning about trees and

binary search trees, we briefly learned about the concept of balanced trees. We’ll

remember that some trees can be balanced, while others can be unbalanced.

A good example of an unbalanced tree is one where all the data is overwhelmingly

either greater than or less than the root node.

https://medium.com/basecs/how-to-not-be-stumped-by-trees-5f36208f68a7
https://medium.com/basecs/leaf-it-up-to-binary-trees-11001aaf746d
https://medium.com/basecs/how-to-not-be-stumped-by-trees-5f36208f68a7

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 3/16

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 4/16

An unbalanced tree

In the tree illustrated here, the values of the all the child nodes that were added to this

binary search tree are smaller than the root node, 20 . However, this particular tree is

still unbalanced because one side of the tree — in this case, the left subtree of the

larger binary tree — is filled with data/nodes, while the other side, the right subtree, is

empty.

Here’s the trouble with unbalanced trees: the moment that a binary tree becomes

unbalanced, it loses its efficiency. Based on everything that we already know about

binary search trees, we know that they are incredibly powerful because of their

logarithmic runtime, which is exactly what makes them so fast and efficient.

In case you need a refresher, binary search trees, in the best-case scenario, run in O(log

n) time, which means that even as a tree grows, searching through the tree for one

particular node is still pretty fast because, at each level, we cut out half of the tree as

we search through it. This is makes the tree logarithmic.

And herein lies the rub: the logarithmic nature of BST’s only applies and can only be

maintained if they are balanced. Take, for example, the unbalanced tree we saw earlier,

with a root node of 20 . Imagine that we needed to find the node 1 from within that

tree. Since 1 is the node that is at the deepest level of the tree, and because there is no

right subtree to search through, we’re no longer “cutting down” our search time at each

level. On the contrary, we’d actually have to look at pretty much every single node in

the unbalanced tree by the time we actually found the one node that we were looking

for. So, instead of being able to search in logarithmic time, we’re searching in linear, or

O(n) time.

This seems bad, right? Well, we’re certainly not the only ones to think so. In fact, I’m

sure these were the exact words that Adelson-Velsky and Landis said to themselves

some 55 years ago — in Russian though, of course! In order for BST structures to really

be of any use to us, they need to be balanced on both sides/subtrees.

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 5/16

The issue with this requirement is that we can’t ever be sure of what our data will look

like. In other words, we don’t know if our binary search trees will actually end up being

balanced or not, because the chances of our data being evenly distributed on both sides

of our root node are slim to none.

Instead, what we really want is a structure that allows us to always be certain that our

BST will be balanced and even on both of its sides. This is where Adelson-Velsky and

Landis’s creation takes front and center stage. The AVL tree is a self-balancing binary

search tree, meaning that it rearranges itself to be height-balanced whenever the

structure is augmented.

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 6/16

What do we mean when we say that a tree is balanced?

A binary search tree is balanced if any two sibling subtrees do not differ in height by

more than one level. In other words, any two leaves should not have a difference in

depth that is more than one level. We’ll remember that every binary search tree

recursively contains subtrees within it, which in turn contain subtrees within them. In

order for a BST to truly be balanced, it’s two outermost parent subtrees must be

balanced, as should every internal subtree withing the structure, as well.

Okay, so what’s the deal with a “height-balanced” tree? Well, the height of a tree is the

number of nodes on the longest path from the root node to a leaf. Given that

definition, a height-balanced tree is one whose leaves are balanced relative to one

another, and relative to other subtrees within the larger tree.

An easy way to remember what makes for a height-
balanced tree is this golden rule: in a height-
balanced tree, no single leaf should have a
significantly longer path from the root node than
any other leaf on the tree.

For example, the two trees shown in the illustration here look awfully similar at first

glance. However, the first one is balanced, while the second is not.

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 7/16

Balanced vs. unbalanced trees

In the first tree, the difference between the left and right subtrees does not differ by

more than one level. The left subtree’s nodes extend to the second level, while the right

subtree’s nodes extend to the third level.

If we compare this to the bottom tree, we can see an immediate difference: the bottom

tree’s subtrees differ by more than one level in height. The bottom tree’s left subtree

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 8/16

extends only to the first level, while its right subtree extends to the third level.

Remember our golden rule of height-balanced trees?

No single leaf should have a significantly longer path from the root node than any other

leaf on the tree.

In the top (balanced) tree, the longest path is only one node longer/one level deeper

than other nodes on it’s comparative sibling subtree. But in the bottom (unbalanced)

tree, the longest path is two nodes/two levels deeper than the other node on its sibling

subtree.

Weighing the AVL scales
Now that we understand the rules and reason behind AVL trees, let’s see if we can

distinguish and convert between AVL trees when we need to!

In the tree drawn below, there are 6 nodes (including the root) and a left and right

subtree.

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 9/16

A BST (not an AVL tree!)

The height of the entire tree is 4, since the path from the root to the longest leaf e is 4

nodes. The height of the left subtree is 2, since the root node, a , of the left subtree has

only one leaf, meaning that the longest path from a to b is 2 nodes. Similarly, the

height of the right subtree is 3, since the longest path from the right subtree’s root d to

e , is 3 nodes.

The children of node d have heights that differ by more than one level; node f ’s

height is 2, while its sibling, the left subtree of node d , is empty, with a height of 0.

Since node d ’s subtrees differ in height by more than one level, this is certainly not an

AVL tree, as it violates one of the key rules of an AVL.

Okay, so this is not an AVL tree; but, we know that an AVL tree would be super useful,

right? So, how can we turn this tree into an AVL tree?

Well, since we know the rules for an AVL tree, and we know how to make it a height-

balanced tree, we could potentially try to rearrange these nodes in such a way that this

currently unbalanced tree will quickly become height-balanced.

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 10/16

Converting a BST into an AVL tree

If we rearrange node d and its descendants, we can reformat the exact same BST we

were just dealing with into an AVL tree, which is balanced. All we’ve done, really, is

shifted around the right subtree. Where the right subtree once had a root node of d , it

now has a root node of e , with two children beneath it.

The logic for how we rearranged those nodes stems from the balancing formula that

every AVL tree will adhere to: if the subtrees of a node has heights h1 and h2, then the

absolute value of the difference of those two heights must be less than or equal to (≤)

1. In other words, the difference between the heights of two subtrees in an AVL tree

should never exceed 1 level.

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 11/16

The balance factor of a height-balanced binary tree

The idea of “never exceeding 1 level” of height difference between two subtrees is also

known as the balance factor. The balance factor is the difference in heights of its two

subtrees. In a height-balanced tree, the balance factor can either be 0, -1, or 1, hence

the reasoning for taking the absolute value between to subtrees and checking that the

absolute value in their difference is under 1. The balance factor is how an AVL tree

determines whether or not any given subtree of a tree is balanced or not.

So what happens if an AVL tree figures out that a tree isn’t balanced? Sure, we know

that we can turn an unbalanced tree into a proper, height-balanced one. But how do we

even go about doing this if (and when) we need to?

Time to find out!

Clever modifications for clever trees
We can think of AVL trees as a super clever set of scales, which can just magically

balance themselves out evenly, no matter what you put on them. And, what’s more, no

matter what you choose to be the center point of the data, the AVL “scales” will

reconfigure itself so that the data is reorganized to be as balanced as possible.

For example, in the unbalanced BST we initially looked at, our input data was ordered

and inserted in a descending manner, which made our AVL “scales” look very lopsided.

In order to self-balance this tree the way that an AVL tree would do, we’d need this tree

to be even on both sides of the “scales”, so that no matter what the root node is, the

scales and subtrees would balance out correctly.

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 12/16

The scales of an unbalanced binary search tree

Except, of course, that AVL trees aren’t doing this work of balancing themselves

magically. Rather, they’re employing a lot of logic under the hood, which perhaps

makes them seem magical (and a tad bit intimidating, I’ll admit)!

So what exactly is this logic? Well, to be totally honest, it really is nothing more than

some fancy node swapping! If you’re feeling like you’ve heard of this before, it’s

because you have. We dealt with node swapping back when we were learning about

heaps; in order to maintain the structure of a heap, we had to swap nodes in order to

keep both the correct order of nodes as well as the correct heap structure.

In the context of height-balancing trees, the correct term for this kind of “glorified

node swapping” is “rotations”. When it comes to AVL trees, there are two main types of

rotations to use in order to rearrange nodes in a tree and do the hard work of self-

balancing: single rotations and double rotations.

https://medium.com/basecs/learning-to-love-heaps-cef2b273a238

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 13/16

Single rotations are by far the simplest way to rebalance an unbalanced tree. There are

two types of single rotations: a left rotation and a right rotation. A left rotation is

useful if a node is inserted into the right subtree of another, higher up node’s right

subtree, and that insertion or a deletion causes a tree to become unbalanced.

In the image shown here, a left rotation is performed on an unbalanced tree, with a

root node of 1 , and a right subtree with a node of 2 , with its own right subtree/node

of 3 .

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 14/16

Single rotations to transform an AVL tree

Since this tree is currently unbalanced, we swap the right subtree and perform a left

rotation to make node 1 the left subtree of 2 . This not only maintains the numerical

order/structure of the elements as one would expect for a BST, but it also balances the

tree so that both 1 and 3 are in their correct locations relative to the new root node,

2 .

As you might have already guessed, a right rotation is the exact opposite of this

scenario. If a node is inserted into the left subtree of another child node’s left subtree

(and the tree becomes unbalanced as a result), then we can perform a left rotation on

the tree, so that 9 , the former left subtree of the root node 10 , becomes the new root

node, and 8 and 10 become its respective left and right subtrees.

Sometimes, however, a single rotation just won’t cut it. In those scenarios, desperate

times call for double rotations: namely, either a left-right rotation, or a right-left

rotation. And yes, they probably are implemented in exactly the way that you expect

they would be.

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 15/16

Double rotations to transform an AVL tree

A left-right rotation is a combination of a left rotation, followed by a right rotation. In

the examples shown here, we perform a left-right double rotation on the tree with a

root node 3 , a left subtree with a node 1, with its own right subtree and a node of 2 .

Once we perform a left rotation on the left subtree, our tree is a little easier to deal

with. Our tree has transformed from 3–1–2 into 3–2–1 . We’re back to something

familiar: a left subtree of a left subtree. Since we already know how to handle those

kinds of trees, we can easily perform a right rotation on the left subtree, so that 2 is

now the new root nodes, and 1 and 3 are its children.

Conversely, a right-left rotation is the exact same thing, but in the reverse order. A

right-left rotation is a combination of a right rotation followed by a left rotation.

And thus, with some super fancy swapping, these clever trees do some very important

and smart work: they make sure that we can leverage the awesomeness of binary

search trees and their efficient runtime. AVL trees are amazingly helpful in ensuring

that, no matter what we add or remove from an AVL tree, our structures are smart and

flexible enough to rebalance themselves and handle whatever we throw their way! And

for that, I am deeply grateful that someone else was around to ask these tough

questions (and come up with an elegant solution) over half a century ago, before you

or I even could.

Resources
There are a whole host of resources out there on AVL trees, if you just know what to

Google for when you search for them. Height-balanced trees are a pretty common

concept in core computer science classes, so they are usually covered in CS curriculum

at some point or another. If you’re looking for some further reading (that isn’t too

math-heavy just yet), the links below are a good place to start.

10/28/21, 10:31 AM The Little AVL Tree That Could. The more and more that I learn about… | by Vaidehi Joshi | basecs | Medium

https://medium.com/basecs/the-little-avl-tree-that-could-86a3cae410c7 16/16

1. AVL Trees, AVL Sort, MIT Department of Computer Science

2. Data Structures and Algorithms — AVL Trees, Tutorialspoint

3. AVL Trees, Professor Eric Alexander

4. How to determine if a binary tree is height-balanced, Geeksforgeeks

5. Balanced Binary Search Trees, Professor Karl R. Abrahamson

6. Height-Balanced Binary Search Trees, Professor Robert Holte

Programming Data Structures Computer Science Tech Software Development

About Write Help Legal

Get the Medium app

https://www.youtube.com/watch?v=FNeL18KsWPc
https://www.tutorialspoint.com/data_structures_algorithms/avl_tree_algorithm.htm
http://pages.cs.wisc.edu/~ealexand/cs367/NOTES/AVL-Trees/index.html
http://www.geeksforgeeks.org/how-to-determine-if-a-binary-tree-is-balanced/
http://www.cs.ecu.edu/karl/3300/spr16/Notes/DataStructure/Tree/balance.html
https://webdocs.cs.ualberta.ca/~holte/T26/avl-trees.html
https://medium.com/basecs/tagged/programming
https://medium.com/basecs/tagged/data-structures
https://medium.com/basecs/tagged/computer-science
https://medium.com/basecs/tagged/tech
https://medium.com/basecs/tagged/software-development
https://medium.com/?source=post_page-----86a3cae410c7--------------------------------
https://medium.com/about?autoplay=1&source=post_page-----86a3cae410c7--------------------------------
https://medium.com/new-story?source=post_page-----86a3cae410c7--------------------------------
https://help.medium.com/hc/en-us?source=post_page-----86a3cae410c7--------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----86a3cae410c7--------------------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----86a3cae410c7--------------------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----86a3cae410c7--------------------------------

