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Abstract
An evolutionary-based path planning is designed for an autonomous surface vehicle (ASV) used in environmental monitor-
ing tasks. The main objective is that the ASV covers the maximum area of a large mass of water such as the Ypacarai Lake 
while taking water samples for sensing pollution conditions. Such coverage problem is transformed into a path planning 
optimization problem through the placement of a set of data beacons located at the shore of the lake and considering the 
relationship between the distance traveled by the ASV and the area of the lake covered. The optimal set of beacons to be 
visited by the ASV has been modeled through two different approaches such as Hamiltonian and Eulerian circuits. When 
Hamiltonian circuits are used, all the beacons should be visited only once. In the case of Eulerian circuits, the only limita-
tion is that repeated routes cannot exist between two beacons. Both models have important implications on the possible 
trajectories of ASV throughout the lake. In this paper, we compare the application of both models for the optimization of the 
proposed evolutionary-based path planning. Due to the complexity of the optimization problem, a metaheuristic technique 
like a Genetic Algorithm (GA) is used to obtain quasi-optimal solutions in both models. The models have been compared 
by simulation and the results reveal that the Eulerian circuit approach can achieve an improvement of 2% when comparing 
to the Hamiltonian circuit approach.

Keywords  Autonomous surface vehicle · Coverage path planning · Eulerian circuits · Hamiltonian circuits · Genetic 
algorithm

1  Introduction

Autonomous surface vehicles (ASVs) have great potential 
for applications in aquatic environments, such as seas, rivers, 
lakes, and streams (Liu et al. 2016). ASVs do not require a 
crew on board, which leads to the possibility of building 
smaller vehicles, and consequently, reducing significantly 
both production and operation costs. Some examples of tar-
get applications are surveillance, security, monitoring, and 
Search and Rescue operations (SAR), among others.

The Ypacarai Lake, which is located in Paraguay, is an 
adequate test scenario for monitoring applications of ASVs 
since it has recently been under observation for problems 
related to water pollution. The monitoring of the Ypacarai 
Lake requires carrying out periodic analysis of water quality. 
Such tasks can be easily accomplished by equipping an ASV 
with the appropriate sensors, such as temperature, pH, dis-
solved oxygen (DO), turbidity, oxidation–reduction potential 
(ORP), etc. Thus, the ASV can take samples of water and 
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analyze them as it moves throughout the lake. An area of 
the Ypacarai Lake is said to be covered if the ASV goes 
through such area and takes a sample of water. Therefore, 
the monitoring task can be described as a coverage problem. 
A suitable coverage strategy is therefore necessary to take 
these samples and develop an up-to-date map of the condi-
tions of the lake. It is worth indicating that this task can be 
even more challenging since the water conditions may vary 
periodically due to environmental factors, such as changes of 
temperature and rains, as well as human-made events, such 
as massive and uncontrolled waste disposal.

Furthermore, the mentioned coverage problem, which is 
also called Coverage Path Planning (CPP) (Galceran and 
Carreras 2013), can be transformed into a Path Planning 
Problem (PPP) since the distance traveled by the ASV is 
highly correlated with the area of the lake sensed by the 
ASV. Therefore, the main challenge for an efficient monitor-
ing of the Ypacarai Lake is to find an optimal path planning 
for the ASV to follow so that the coverage of the Ypacarai 
Lake is maximized. Path planning problem in autonomous 
vehicles is a main research topic in autonomous systems 
because it allows a robot to tactically move over a specific 
region (Pascarella et al. 2015). Generally, this region is rep-
resented as a map, and the path planning finds intermedi-
ate waypoints between a starting and a destination point, 
which in turn gives intermediate routes. Therefore, a visiting 
tour can be defined between the starting and the destination 
points through several waypoints. In general, the objective 
of a path planning optimization algorithm is to minimize the 
distance traveled by the robot, since it implies lower opera-
tion costs. Conversely, for the proposed coverage application 
transformed into a path planning, the objective is now to 
maximize the distance, which implies a higher coverage of 
the lake as long as redundancy is avoided.

The intermediate waypoints, which are described as a set 
of vertices and edges that connect the vertices between them, 
can be used to build a graph. If the destination and starting 
points are the same, then it is said that the path is a cycle or 
circuit. In graph theory, a circuit that visits each vertex once 
is called a Hamiltonian Circuit (HC). Similarly, a circuit that 
visits all the edges of a graph once and all the vertices at 
least once (it can be more times), then it is called an Eulerian 
Circuit (EC). Hamiltonian Circuits are important in PPP and 
CPP problems because they are used to study the Traveling 
Salesman Problem (TSP), which is the problem of finding 
the minimum HC in a weighted graph. Both types of circuits 
present important implications in the movements and cover-
age of the resulting ASV path planning.

This paper explores, by means of a comparison, the 
suitability of both types of circuits for CPPs. ECs allow 
constructing a path that repeats regions of a map since 
waypoints can be visited as many times as desired. How-
ever, HCs limit the utilization of the waypoints, restricting 

the movements of the ASV. Therefore, it is expected that 
the flexibility gained by applying EC influences positively 
on the distance traveled by the ASV, and consequently, 
on the total covered area. Furthermore, by using an EC 
(non-repeated edges) it is guaranteed that paths are not 
repeated and, in this way, it achieves a higher coverage 
of the lake. Regarding complexity, finding a Hamiltonian 
circuit for a given number of waypoints is very high (NP-
complete problem) since it is well-studied and known as 
the Traveling Salesman Problem (TSP), which is a clas-
sical combinatorial optimization problem (Hoffman et al. 
2013). In contrast, finding an EC for a given number of 
waypoints is easier since there is only one main condition 
to be met by the graph of waypoints to be Eulerian; that 
is, all the vertex (waypoints) should have even number of 
links (Fleschner 2001). Notice that in this case, the links 
are the routes taken by the ASV. Yet, the complexity in 
the Eulerian-based approach stems from finding the best 
subset of selected waypoints and connections that form 
an Eulerian graph, so that at least one EC can be obtained 
from the graph. With the help of a wireless network of 
beacons located at the shore of the lake that act as way-
points and data collections points, a complete graph can 
be built. Furthermore, each edge of this graph provides 
coverage for all the regions of the lake, and therefore, the 
optimization challenge is to find a circuit that provides a 
satisfactory coverage of the lake.

Nowadays, there is no an algorithm that solves these 
types of combinatorial optimization problems in poly-
nomial time (Hoffman et al. 2013). However, there are 
some techniques, such as metaheuristics, that can provide 
a quasi-optimal solution in a reasonable time (Gendreau 
and Porvin 2010). These techniques are, for example, Ant 
Colony Optimization (ACO), Particle Swarm Optimization 
(PSO), and Genetic Algorithms (GA), among others (Yang 
2014, Su and Zhao 2017). In this paper, we demonstrate 
that GAs are suitable search engines for finding HCs and 
ECs in the proposed CPP for the monitoring of Ypacarai 
Lake.

In previous works, the proposed CPP problem of the 
Ypacarai Lake is modeled and evaluated as the TSP. The 
problem is solved by using the GA with different objective 
functions, such as the distance (Arzamendia et al. 2016) and 
coverage (Arzamendia et al. 2017). Furthermore, in the last 
study, the GA approach has been compared with random 
and greedy algorithms and performed some GA parameters 
tuning to obtain better results. In this paper we improve the 
previous work by applying the EC model, which we demon-
strate that achieves better results than the HC model. There-
fore, the main contributions of this paper are twofold:

•	 Modeling the coverage problem of an ASV as a CPP 
using Hamiltonian and Eulerian circuits.
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•	 The comparison of both models using a genetic algorithm 
as search engine in a real-life scenario such as the Ypaca-
rai Lake.

The structure of the paper is as follows. Section II 
describes some relevant related works. Section III presents 
the statement of the problem, including the application sce-
nario and the Eulerian and Hamiltonian circuit definitions. 
Section IV contains the details of the proposed approach 
based on genetic algorithm. Section V contains a compari-
son between the performances of HCs and ECs in the target 
CPP. Finally, Section VI summarizes the main conclusions 
of this paper.

2 � Related work

GA is a technique that has been used in several works related 
to the generation of HCs for the TSP. In (Mukherjee et al. 
2017), the authors present the constrained covering solid 
traveling salesman problems (CCSTSP). In CCSTSP, a 
salesman visits a subset of cities, the remained cities are 
covered within an imprecise predetermined distance and the 
salesman comes back to the initial city within a restricted 
time. They solve this problem by using a combined method 
of random insertion deletion with a modified genetic algo-
rithm (RID-MGA). This work is different to the one pre-
sented in a way that the cities that are not visited should 
be covered by the visited ones within a certain distance. 
In addition, there is a time restriction since this problem is 
intended for emergency cases. In (Wang 2014), the authors 
improve a GA with two local optimization strategies that are 
applied to find the shortest HC, such as the four vertices, the 
three-line inequalities, and the reversion of local Hamilto-
nian paths with more than two vertices.

Regarding the CPP, it has been mostly studied in agri-
culture applications. Several examples with TSP modeling 
and using metaheuristics can be found (Zhou et al. 2014; 
Ryerson and Zhang 2007). In Zhou et al. (2014), the authors 
propose a path planning method that generates a feasible 
area coverage plan for agricultural machines in a region that 
includes obstacles. They formulate the problem as a TSP 
and solve it using the ACO approach. In Ryerson and Zhang 
(2007), the authors study the use of GA to find optimal path 
to cover a farm field while avoiding known obstacles. They 
analyze different aspects of the GA, such as representations 
of the field, obstacles, grid, path, etc., and its adaptation 
towards the application in this area. In Schäfle et al. (2016), 
the authors use a GA to find the best coverage solution by 
dividing the field in small squares of the size of the vehicle, 
and then, calculating the sequence of movements of a robot 
that covers the whole field and minimizes the energy costs.

CPP research in agriculture involves not only UGV 
(Unmanned Ground Vehicles), but also UAV (Unmanned 
Aerial Vehicle), which can be used to take images of a crop 
from high distance. Moreover, it allows the evaluation of crop 
conditions, or for weed detection, or even for irrigation and 
application of fertilizers, among other applications. On this 
line, Pham et al. (2017) propose a cellular decomposition of 
the field for a given CPP with concave obstacles based on the 
generalization of the Boustrophedon variant and using Morse 
functions. Regarding ASV and monitoring tasks, Tokekar et al. 
(2013) present a coverage algorithm for finding tagged fish 
and a localization algorithm to effectively find them in a lake. 
Instead of covering the entire lake, the algorithm searches for 
covering specific regions inside the lake. First, they model the 
problem of visiting all the regions as a TSP with neighbors 
(TSPN), and then, inside each region, the ASV follows a π 
shape path.

Furthermore, EC and HC circuit models are the base for 
other approaches, such as the Chinese Postman Problem (CPP) 
(Eiselt et al. 1995a) and its extension Rural Postal Problem 
(RPP) (Eiselt et al. 1995b). Both models are widely applied 
in applications, such as logistics, where paths are chosen to 
deliver goods, in transportation services like garbage collec-
tion, in mail delivery, and snow plowing, among others. The 
CPP is related to finding ECs because it searches for a solution 
that visits all the edges in a graph, while minimizing the dis-
tance traveled. The RPP, on the other hand, is more practical 
in the sense that only a sub-set of waypoints is obligatory to 
be visited. Then, a path should be constructed with the rest of 
edges while minimizing the distance traveled as well.

The present work is a step forward in the evaluation of HCs 
and ECs for CPP problems. The presented related work shows 
that several works have employed HCs for CPP problems using 
GA as search engine (Mukherjee et al., 2017; Wang 2014). 
This metaheuristics engine is adequate to solve high com-
plex optimization problems as the CPP. However, as far as 
the authors’ knowledge, this is the first work that models the 
CPP using Eulerian circuits for Autonomous Surface Vehicles 
(ASV). To validate such approach, we compare the results 
of a target CPP problem like the monitoring of the Ypacarai 
Lake when using both HC and EC models. Furthermore, an 
evaluation of the GA as a solving tool vs other metaheuristics 
is also included. Finally, the flexibility of using EC in CPP is 
demonstrated by showing how the distance traveled, which is 
related to the coverage, can be adjusted according to the ASV 
autonomy requirements.
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3 � Statement of the problem

3.1 � Coverage path problem transformed into path 
planning problem

The studied problem calculates the best path planning for an 
ASV to take water samples and deliver them to a network 
of data beacons located at the shore of the lake. Therefore, 
this problem can be formulated as having a set of beacons 
and determining how the ASV can take the largest number 
of samples to be delivered to the beacons. These beacons 
can be considered as intermediate waypoints. The sum of 
the routes between the first and last waypoints lead to the 
total path. An image of the Ypacarai Lake is shown in Fig. 1, 
which depicts the set of beacons. The number and positions 
of beacons have been chosen so that there is an equally 
spaced network with wireless capabilities for collecting data 
with an average distance of about 1 km between them. Still, 
these can be adapted in the future for a better integration 
with an existing data infrastructure. This distance is esti-
mated so that it is feasible to deploy links in the 2.4 GHz 
(Zigbee technology, IEEE 802.15.4 standard). Under these 
conditions, the total number of beacons required is n = 60.

Using Fig. 1, a reference map is created. The origin of this 
map is selected as coordinates (25° 22′ 21″ S, 57° 22′ 57″ W) 
and all the beacon coordinates are translated into this new 
reference. In addition, each beacon is given an identification 

number that will be used throughout this study, from b0 to 
b59. This convention is shown in Fig. 2. For example, in this 
map beacon 0 is located at (4,860; 13,500).

Regarding the coverage performed by the ASV, it is 
assumed that one sample taken at a given point represents 
the conditions of the water of an area SASV around the point. 
Then, the total coverage Ctot is calculated by multiplying 
this area SASV by the distance traveled by the ASV, which is 
denoted as PL. The distance traveled is calculated by find-
ing the sum of Euclidean distances between the adjacent 
beacons in the sequence that forms the final path solution. 
Moreover, the route intersections are considered as dupli-
cated sampled data. Therefore, the term nrouteinters is used to 
account for the number of intersection among routes, which 
should be subtracted from the area covered. The final expres-
sion is:

These concepts are illustrated in Fig. 3, where the green 
rectangle is the covered area by the ASV and the red area is 
the duplicated sensing.

3.2 � Hamiltonian Circuits vs Eulerian Circuits

The set of beacons and their possible connections, which are 
determined by the routes taken by the ASV, can be modeled 
as a complete and connected graph G{V,E}. Where V ={v

(1)Ctot = SASV × PL − nrouteinters × S2
ASV

Fig. 1   Ypacarai Lake and the data wireless beacons (Arzamendia 
et al. 2017) Fig. 2   Reference map (Arzamendia et al. 2017)
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1,v2,...,vn} is the set of vertices, E={e1, e2,…, en} is the set 
of edges in which ei connects vi and vj, ∀i, j = {1, 2,… , n} . 
Moreover, each edge has a weight dij (dij > 0; dii = ∞). 
Furthermore, it is assumed that the path conditions between 
a pair of beacons is identical in either direction. Thus, the 
weight is equal in both directions (dij = dji) and it is said 
that the graph is undirected. In the presented model, the 
weight of an edge is the Euclidean distance between vi and 
vj, ∀i, j = {1, 2,… , n} . For the proposed CPP, the beacons 
are the vertices, the routes are the edges, and the distance 
between two beacons is the weight of the corresponding 
route. The order of a graph is |V|, calculated as the number 
of vertices and the size of a graph is |E|, calculated as the 
number of edges. The degree of a vertex is the number of 
edges that connect to it, where an edge that connects to the 
vertex at both ends (a loop) is counted twice.

By definition, a Hamiltonian cycle is a tour in a graph 
that visits all the vertices and edges of a graph once and 
starts and ends at the same vertex (Hoffman et al. 2013). For 
having this, each vertex should have only a pair of edges, 
one incoming and one outgoing edge, or what is the same, 
all the vertices of the graph should have a degree equal to 
two. Then, a Hamiltonian cycle (HC) is defined for a given 
graph G{V,E} as:

An edge e is valid if that edge remains entirely inside 
the perimeter of the lake. If not, then the edge cannot be 

(2)

HC = G�
{

V �,E�
}

s. t. V � = V ,

E�
⊂ E ,

deg(vi) = 2 ∀i = {1, 2,… , n}

ej is valid, ∀i = {1, 2,… , n}

considered a part of the sub-graph G′. Because of this defini-
tion, the order and the size of G′ is the same, i.e., |V’′| = |G|′. 
In a graph with n vertices there are (n − 1)!/2 possible HCs. 
The problem of finding the HC with minimum length is the 
widely studied TSP (Hoffman et al. 2013).

An Eulerian circuit (EC) is a closed tour that visits all 
the edges (Fleischner 2001). However, it can visit each 
vertex more than once. One graph has at least an EC if the 
degree of all the nodes is even. This condition was estab-
lished by Euler in 1736 when studying the Koningsberg 
bridge problem (Wallis 2013). One additional requirement 
is to verify that it is a connected graph, meaning that there 
is a path between every pair of vertices in the graph. Simi-
larly to the HC, the definition of EC is:

Please notice that in Eq. (3), the degree of the vertices 
of an EC is an even number and that not all the initial ver-
tices from G might be included in the sub-graph, then the 
size of G” (number of edges) varies and it is less than the 
square order of G” (number of vertices). Furthermore, as 
in the HC, only the valid edges are considered.

The comparison of both circuits (2) and (3) shows that 
finding the optimal EC is much more difficult than finding 
the optimal HC because the order of HC is fixed, while in 
the EC is variable. The complexity of both approaches can 
be observed by calculating the number of possible solu-
tions for each case. For the HC, the number of alternatives 
to choose from initially as the next vertex is n − 1 and, as it 
visits the vertices, the number of alternatives is reduced by 
1 after each visit. Therefore, the number of possible tours 
is (n − 1)! divided by two, because it is being considered 
an undirected graph. On the other hand, in the EC, the 
number of alternatives remains as n-1. Consequently, the 
number of possible tours is (n − 1)n−1/2, which is signifi-
cantly higher than (n − 1)!. Figure 4 presents a graph that 
compares the number of possible solutions for up to 50 
vertices.

These two approaches can be applied to the proposed 
CPP of the Ypacarai Lake to find the path that best maxi-
mizes the distance traveled by the ASV. This CPP problem 
can be expressed as:

(3)

EC = G”{V”,E”} s. t. V” ⊆ V ,

E” ⊂ E,

deg(vi) ≤ 2m∀i = {1, 2,… ., o}

and m ≥ 1, o < n

ej is valid,∀i = {1, 2,… ., p}

and p < n2

(4)
maxdtotal =

∑

dij s.t. dij = length(vivj) and vivj ∈ Ess

Fig. 3   Illustration of ASV coverage
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Therefore, the problem is to find two sub-graphs GHC
{VHC,EHC} and GEC{VEC,EEC} from the initial graph 
G{V,E} that satisfy the aforementioned conditions (2) and 
(3). It is important to recall that for a HC, the order and 
size of the graph is always the same |V|=|VHC|=|EHC| = 
n. However, this is not necessarily true for an EC, as indi-
cated in Eq. (3). Therefore and for the sake of making a 
fair comparison between these two approaches, we will 
force the graphs to have the same size |EHC|=|EEC| = n.

4 � Evolutionary path planning

4.1 � Genetic algorithm

The GA is a metaheuristic technique that mimics the evolu-
tion in nature (Sastry et al. 2014). Metaheuristic techniques 
are adequate for solving problems with high levels of com-
plexity, like NP-hard problems (Dreo et al., 2006). From an 

initial set of possible solutions or individuals, new solutions 
are generated by applying genetic operators, such as selec-
tion, crossover, and mutation. Individuals with better quality 
have higher probability to participate in genetic operations 
and consequently, produce better individuals by combining 
the best traits of both parents. A diagram of a classical GA 
is shown in Fig. 5.

4.2 � Individual representation

The individuals in the path planning problem are defined 
by their chromosomes, which are represented as arrays of 
the vertices of a graph. The positions inside the array deter-
mine the edges of the graph. Consequently, the definitions 
of the individuals for an HC and EC are shown in (5) and 
(6) respectively.

These representations take into consideration the defi-
nitions of HC and EC described in the previous section. 
Each element of the array has a pair of connections, one 
incoming from the previous beacon and one outgoing to the 
next beacon to be visited. According to (5), each beacon can 
only appear once in the individual. Notice that this is a main 
requirement to form a HC. In (6), the individual is forced 
to form an Eulerian graph, which is the main condition to 
generate an EC. Next subsection describes the proposed pro-
cedure to create random Eulerian graphs.

4.3 � Generation of the initial population

The generation of the initial population is very important 
for the proposed evolutionary path planning based on HC 
and EC. In the case of HC, there are two restrictions, such 
as (1) no repetition of beacons in the individuals and (2) no 
invalid routes. It is important to recall that a route is invalid 
if the ASV should get out of the lake to go from one beacon 
to another. In the case of ECs, the procedure to generate 
initial populations is more complicated since there are more 
restrictions, such as (1) all the vertices in the graph should 
have an even degree, (2) no invalid routes, and (3) the result-
ing graph should be connected.

Two mechanisms are developed to create individuals that 
are HC and EC. The first one is shown in Fig. 6. Basically, 
this mechanism generates random routes beacon by beacon, 
verifying: (1) if it is already included, and (2) if it is a valid 
route until the individual with a length of n is obtained. If at 
some point the next beacon is not found after a user defined 
number of attempts, the process will restart.

(5)
indivHC =

[

v1v2 … .vn
]

s.t. vi ≠ vj ∀i, j = {1, 2,… , n}

(6)indivEC =
[

v1v2 … .vn
]

s.t. GEC is Eulerian

Fig. 4   Complexity of Eulerian circuit ((n − 1)^(n − 1)) vs Hamiltonian 
circuit (n-1)!

Fig. 5   Illustration of GA steps
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For the Eulerian individual, since the number of possibili-
ties is much larger, a different mechanism is designed (shown 
in Fig. 7). Notice that this mechanism also includes some 

correction techniques for finding valid ECs. First, the individ-
ual is constructed from a n square matrix called the connection 
matrix. This matrix has values of 1 and 0 indicating if there is a 
route between a beacon (rows) and another beacon (columns) 
or not. The total number of routes can be selected, but in this 
study and for the sake of comparison with the Hamiltonian 
based approach, n is selected equal to 60. The number of 1’s 
is distributed randomly across the matrix.

Next step is to evaluate if there is an invalid or dupli-
cated route. If there are invalid routes, then a correction 
algorithm moves the 1 at the invalid position to its left side 
and checks again if this is a valid route. The procedure is 
repeated until finding a valid route for all the invalid routes 
of the matrix. Then, there is a verification of repeated routes. 
Since it is a symmetric graph, the cost or distance is the 
same going from one beacon to other and vice-versa (dij = 
dji ∀i, j = {1, 2,… , n} ). If there are repeated routes, the con-
nection matrix will be created again. Next step is to verify if 
the Eulerian conditions are satisfied, i.e., if all beacons have 
an even number of connections. If not, the beacons with odd 
connections are paired between themselves. An example of 
this idea is shown in Fig. 8. On the left (Fig. 8), there is a graph 
with six nodes (beacons) and beacons b3 and b5 have an even 
number of routes. To correct this, the route b4b5 is replaced by 
b4b3. Now all the nodes in the graph have an even number of 
connections and therefore, the Eulerian condition is satisfied.

The final check consists of evaluating whether the resulting 
graph is connected, meaning that the full path is connected 
without any sub tour. If this condition is satisfied, then the out-
put is an Eulerian circuit. Finally, the two proposed procedures 
to generate HCs and ECs (see Figs. 6, 7) are repeated until the 
desired size of initial population is generated.

4.4 � Fitness function

The quality of each individual is calculated with the help of 
a fitness function. For the proposed evolutionary-based CPP, 

Fig. 6   Procedure to create HCs

Fig. 7   Procedure to create ECs

Fig. 8   Correction of nodes with odd connections
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the best individuals are the paths that maximize the coverage 
area. The conventional fitness function is:

Where PL is the total path length, i.e., the sum of the 
distances between the beacons that form the solution, SASV 
is the sampling area and Alake is the lake area.

Two fitness functions are used in this study to improve 
the conventional one by considering invalid routes and the 
intersections between routes. These are (1) a death penalty 
fitness function and (2) a penalty fitness function. The first 
one discards the individuals with invalid routes by assigning 
a negative value to the fitness. The second fitness function 
does not discard the individual, but applies a penalty that 
decreases its fitness values according to the number of inva-
lid routes. Regarding the intersection between routes, the 
distance traveled by the ASV is multiplied by a sampling 
area and the repeated areas are subtracted from the total 
area covered. The repeated areas are the areas where route 
intersections occur. A mathematical definition of the death 
penalty fitness function is:

where nintersec is the number of intersections of the path.
For the penalty factor, the definition is:

where the right term is the same used as in the death pen-
alty and the left term is the percentage of the valid interme-
diate routes from the total included in the individual. The 
idea of using these two types of fitness functions is that the 
death penalty-based fitness function prevents individuals 
with invalid routes from participating in the generation of 
new individuals. However, when using the penalty function, 
there is still possibility that invalid individuals participate 
as parents in genetic operations. This approach considers 
that invalid individuals still might have valuable traits in 
their chromosome structure that can be used in the future to 
generate better individuals.

4.5 � Genetic operators

The GA is basically the same shown in 5. However, a mech-
anism called elitism is added. This mechanism is used to 
avoid losing a good result found in subsequent generations. 
For this, the best percentages of the population are separated 

(7)fitconv =
SASV ⋅ PL

Alake

(8)fitDP =

{

SASV ⋅PL−S
2
ASV

⋅nintersec

Alake

, with valid routes

−1, with invalid routes

(9)fitPF =

(

nvalrout

ntotrout

)

.

(

SASV ⋅ PL − SASV
2
⋅ nintersec

Alake

)

and the crossover and mutation operators are applied to the 
rest of the population. The resulting offspring replaces com-
pletely the parents and the elitist individuals are added to the 
offspring, maintaining the size of the population.

Pairs of individuals (parents) are selected from the rest 
of the population for crossing over and generating a pair of 
offspring (children). The main mechanisms used for parent 
selection are the roulette wheel and tournament (Sivanan-
dam and Deepa 2007). Two genetic operators are applied 
sequentially, but with certain probability, crossover and 
mutation operators. In the crossover, pieces of the parents 
are exchanged for offspring production. The most common 
types are one or two-point crossover. However, special atten-
tion should be paid to the Hamiltonian case to avoid repeated 
vertices, which is an invalid solution. Therefore, a specific 
crossover mechanism should be used, like the ordered 
crossover. After creating the offspring, a mutation operator 
is applied. The mutation operator used for the problem is 
the shuffle index, which switches the values of two positions 
in the array of the individual. In this way, the repetition of 
beacons is avoided.

It is relevant to emphasize that the resulting offspring 
will always be Eulerian or Hamiltonian circuits just like 
their parents, since the crossover and mutation operators 
do not modify at any time the number of connections that 
each vertex of the graph has. These operators replace the 
edges by different edges but keeping always the same the 
number. This is an additional advantage of the use of the 
genetic algorithm in our problem. However, the resulting 
offspring might have invalid routes, but these will be con-
sidered and handled by the fitness function during the next 
parent selection.

4.6 � Stop criterion

There are different approaches for stopping the GA. For 
example, if a number of generations have been executed or 
if the improvement rate of the best population individual 
has been stabilized or converged. The proposed approach 
considers the number of generations executed, but once a 
certain level of convergence has been achieved.

5 � Performance evaluation

This section includes the details about the simulation per-
formed. It contains the main features of the simulated envi-
ronment and the results obtained under those conditions.

5.1 � Simulation environment

The GA parameters used are described in Table 1. The simu-
lator has been implemented in Python 2.7 and the library 
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DEAP (Distributed Evolutionary Algorithms for Python) 
(Fortin et al. 2012) has been used for the GA implemen-
tation. This has been made public in (Arzamendia 2017). 
Different values of crossover and mutation probabilities are 
tested in Arzamendia et al. (2017), but the most suitable 
ones are shown in Table 1.

5.2 � Simulation results

This section is divided into three parts. First, an analysis 
is performed involving HC and EC to evaluate the capa-
bility of finding a path that has the best coverage through 
GA. Then, these two models are applied to other stochastic 
metaheuristics algorithms, such as the Iterated Local Search 
(ILS) and Tabu Search (TS). Second, the HC and EC are 
compared with conventional techniques for exploring graphs 
like the Depth First Search (DFS). Finally, we include an 
evaluation of the impact of the number of beacons visited 
on the achieved coverage for the EC case. Notice that this 

is important because it allows the final user to adjust the 
distance traveled by the ASV according to its energetic 
autonomy.

5.2.1 � HC vs. EC performance

The analyses conducted to evaluate and compare the perfor-
mance of the proposed approach are: (i) an unconstrained 
model, i.e., considering invalid routes as part of the solution 
in the trajectories of the ASV, and (ii) the simulation of the 
constrained model, which rejects invalid routes. The uncon-
strained model can be seen as a graph without obstacles 
(invalid routes), where every beacon can be accessed from 
any other, while in the constrained model there are obstacles 
created by the shape of the lake.

The simulation results obtained from the first analysis are 
shown in Table 2, in which the HC and EC models are com-
pared. For each model, three fitness functions are used: the 
conventional (without considering route intersections), the 
death penalty, and penalty factor. However, in this first set 

Table 1   Simulation parameters
Number of simulations 20
Distance between beacons (km) 1 (approximately)
Lake size (km2) Alake 68.72
Sampling area (m) SASV 20
Population size 100
Number of generations 1000
Selection Roulette Wheel
Crossover Ordered (OX1)
Cross-over probability Pc 0.8
Mutation Shuffle index (indpb = 0.05)
Mutation probability Pm 0.2
Elitism rate 0.2
Fitness fitconv =

SASV ⋅PL

Alake

fitDP =

{

SASV ⋅PL−S
2

ASV
⋅nintersec

Alake

, with valid routes

−1, with invalid routes

fitPF =

(

nvalrout

ntotrout

)

.

(

SASV ⋅PL−SASV
2
⋅nintersec

Alake

)

Table 2   Simulation results of HC and EC considering invalid routes

Coverage (%)

HC EC

Conventional Death penalty Penalty factor Conventional Death penalty Penalty factor

Worst 16.55 15.97 15.97 16.83 16.43 16.23
Best 16.69 16.21 16.24 19.77 18.25 18.43
Average 16.62 16.11 16.11 17.68 17.53 17.26
Standard deviation 0.04 0.06 0.07 0.71 0.47 0.54
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of simulations, since the invalid routes are disregarded, both 
death penalty and penalty factor are the same and equal to:

According to the results of Table 2, the EC approach 
achieves better coverage for all fitness functions. In general, 
it is an improvement of at least 1% of coverage, with the 
best overall result achieved by the conventional fitness func-
tion with almost 20% coverage of the lake. Using the death 
penalty and penalty factor, the coverage is little above 18% 
in the case of ECs.

Figure  9 shows the best solutions of the HC vs EC 
approaches of the unconstrained model. It can be observed 
that the routes in the EC-based approach are more spread 
out throughout the lake. This is possible thanks to the rep-
etition of beacons. In the case of HCs, the ASV stays more 
time in the center area of the lake, which in turns implies a 
high level of redundancy in the collected data. Also, it can 

(10)fitDP = fitPF =
SASV ⋅ PL − SASV

2
⋅ nintersec

Alake

be observed that since invalid routes are not rejected from 
the possible solutions, they appear especially in routes that 
involve beacons in the interval [0, 30] (on the right shore of 
the Ypacarai Lake).

The results of the second set of simulations are shown in 
Table 3. In this case, only the performance of the death pen-
alty and penalty factor fitness functions are tested because 
solutions with invalid routes are not considered and the con-
ventional mechanism does not cope with these routes. It is 
worth recalling that the Death Penalty discards invalid solu-
tions and the Penalty Factor penalizes the fitness function. 
In Table 3, the coverage values are lower than in Table 2 
because many of the previously selected routes were invalid 
and they should be replaced by shorter but valid ones. The 
best overall results are achieved by the EC model with death 
penalty function with 16.6% coverage of the lake. The EC 
with penalty factor achieved 15.9% coverage of the lake, but 
still is about 1% better than the HC model.

Figure 10 shows the best individuals using the HC on 
the left and the EC on the right. It can be seen that the EC 

Fig. 9   ASV trajectories for the best solutions of HC (a) and EC (b) based approaches including invalid routes (unconstrained)

Table 3   Simulation results 
rejecting invalid routes

Coverage (%)

HC EC

Death penalty Penalty factor Death penalty Penalty factor

Best 14.82 14.75 16.61 15.89
Worst 14.23 14.05 14.56 14.44
Average 14.54 14.42 15.40 15.13
Standard deviation 0.16 0.19 0.55 0.42
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approach provides better coverage of the lake. Again, the 
routes obtained by HC-based model are more concentrated 
on the center of the lake. In contrast, in the EC-based solu-
tion, the GA uses routes that involve beacons with ids rang-
ing from [47–59] and [27–37]. These beacons provide larger 
distances and consequently, higher coverage levels of the 
Ypacarai Lake. It is also noticeable that from the rest of bea-
cons, not all are chosen and in many cases. when one beacon 
is selected, then, its neighbors are disregarded.

According to the results shown in Tables 2 and 3, it can 
be concluded then that for the target CPP in the Ypacarai 
Lake, the EC-based approach improves the performance of 
the HC or TSP by almost 2% of the coverage. Considering 
the size of the lake, this represents a considerable amount 
of improvement.

5.2.2 � Proposed method vs conventional algorithms

First, a brief description about the alternative algorithms 
is given. ILS and TS are algorithms based on probabilistic 
and stochastic processes and they are not bio-inspired like 
the GA (Brownlee 2011). They are predominantly global 
optimization algorithms and apply a neighborhood exploring 
(local) search procedure. In the case of ILS, it samples in a 
broader neighborhood of candidate solutions and uses a local 
search technique to refine their local optima. ILS explores a 
sequence of solutions created as perturbation of the current 
best solution. On the other hand, TS maintains a short-term 
memory of recent moves and prevents returning to recently 
visited areas of search space. It was originally designed to 
manage a hill climbing technique for the neighborhood heu-
ristic exploration.

Regarding the implementation of ILS, it uses a double-
bridge move as perturbation technique and a stochastic 2-opt 
as local search technique. The 2-opt is also implemented in 

Fig. 10   ASV trajectories for the best solutions of HC (a) and EC (b) based approaches rejecting invalid routes (constrained)

Table 4   HC and EC GA-based 
vs alternative metaheuristics

Coverage %

HC EC

Random ILS TS GA-DP Random ILS TS GA-DP

Best 12.16 15.00 15.48 14.82 12.01 16.21 16.33 16.61
Worst 10.21 14.55 15.18 14.23 10.23 14.50 14.67 14.56
Average 11.15 14.80 15.34 14.54 11.26 15.54 15.74 15.40
Standard deviation 0.50 0.14 0.08 0.16 0.45 0.47 0.44 0.55
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the TS as its local search procedure. The results of these 
techniques for the HC and EC are summarized together with 
the proposed approach using Death Penalty as fitness func-
tion in Table 4. In addition, the random solutions for each 
case are also included. Just like the case of the proposed 
approach, the stochastic algorithms were simulated 20 times 
and each simulation has 1000 iterations.

On the other hand, we also evaluated a DFS (Miller and 
Ranum 2011), which explores the graph conceiving it as a 
tree structure. It starts at a node and from there, it moves to 
one of its children located one level below. This procedure is 
repeated until reaching the desired node or desired path length. 
In case that at some node it is impossible to continue descend-
ing, then, the algorithm returns to its parent and searches an 
alternative node. In our model, we are constructing a path that 
has a number of segments equal to the number of beacon, i.e. 
n = 60. The results are summarized in Table 5. These explora-
tion techniques only achieve slightly better performance than 
the random case and the proposed EC approach outperforms 
it by 4%.

It is seen that the proposed HC and EC models are better 
than the random algorithm and the conventional DFS. This 
justifies in the first place the use of a metaheuristic techniques 
like the GA. Then, it is seen that they are better than other 
stochastic metaheuristic technique like the ILS. Still, GLS and 
TS outperform HC but in that case, by applying the EC model 
it can increase the value of the coverage of the lake.

5.2.3 � EC coverage vs number of beacons

By removing the restriction of the HC of visiting all the bea-
cons, it is still possible to build a tour with a smaller distance 
if the requirements of the ASV demands to do so. This is 
required, for example, if the ASV has an autonomy that limits 
the distance traveled. Simulations have been carried out to 

investigate the relationship between the number of beacons 
(the order of the sub-graph G”) and the distance traveled. The 
number of beacons vary with the following values nbeacons = 
{10, 20,30,40,50, 60}, which are smaller than those of the HC. 
The results are shown in Table 6 and plotted in Fig. 11.

The simulation results show that there is almost a linear 
relationship between the distance traveled and the number of 
beacons, which can be approximated as:

Notice that this information is useful for the final user 
because, if the ASV has an autonomy of 300 (km), then, it 
is known that the number of beacons should be nbeacons ≤ 30. 
Additional information that can be extracted from Fig. 10 is 
that there is a greater dispersion among the simulations as 
the number of beacons increases, as a consequence of having 
a greater number of alternatives as the number of beacons 
increases as well.

6 � Conclusion

This work presents an approach to find a suitable path plan-
ning for monitoring the Ypacarai Lake with an ASV. This 
CPP has been modeled using the concepts of Hamiltonian 

(11)PL(km) = 10 x nbeacons

Table 5   HC and EC GA-based 
vs alternative graph-exploring 
algorithms

Coverage %

DFS HC EC

Best 12.67 14.82 16.61
Worst 11.24 14.23 14.56
Average 12.12 14.54 15.40
St. Dev 0.33 0.16 0.55

Table 6   EC distance traveled vs 
number of beacons–statistical 
summary

Distance (km) Number of beacons

10 20 30 40 50 60

Best 113.05 213.20 323.50 412.73 499.71 602.87
Worse 93.35 190.96 276.21 356.75 438.19 513.55
Average 102.14 200.86 300.15 390.12 474.89 568.91
Standard deviation 4.50 6.57 10.83 13.56 15.28 25.18

Fig. 11   EC distance traveled vs number of beacons – multiple simu-
lations results
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and Eulerian circuits, which have been taken from the graph 
theory. The best circuits, which maximize the coverage of 
the lake, are found using an evolutionary algorithm. To 
solve the proposed CPP, a tailored evolutionary algorithm 
is designed, considering the requirements for obtaining both 
HCs and ECs. Two fitness functions are defined to handle 
the invalid individuals that may appear as new individuals, 
such as a death penalty and penalty factor fitness function. 
The simulation results show that for the studied cases, the 
EC-based approach achieves significantly higher coverage 
than the HC (2% higher coverage). The main reason is the 
flexibility exhibited by the ECs to visit beacons more than 
one time. The best result is obtained for the death penalty 
case and it reaches almost 17% of coverage of the lake. A 
comparison with conventional algorithms like a random and 
DFS is also tested, as well as stochastic algorithms (ILS 
and TS), showing that the EC achieves at least 1% of cover-
age improvement. The last contribution shows the flexibility 
of the use of ECs for CPP since the path planning can be 
adjusted to find a suitable coverage for a given maximum 
distance traveled, which in turns is related to the autonomy 
of the ASV. The obtained results determine that there is near 
a linear relationship between the number of beacons used 
and the distance traveled by the ASV.
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